基于人工势场的汽车自动垂直泊车试验研究

Yiqun Dong, You-peng Zhang, J. Ai
{"title":"基于人工势场的汽车自动垂直泊车试验研究","authors":"Yiqun Dong, You-peng Zhang, J. Ai","doi":"10.1155/2016/2306818","DOIUrl":null,"url":null,"abstract":"Automobiles automated perpendicular parking using Artificial Potential Field (APF) is discussed in this paper. The Unmanned Ground Vehicle (UGV) used for carrying out experiments is introduced first; UGV configuration, kinematics, and motion controller are included. Based on discretized form of the parking space, the APF is generated. Holonomic path for the vehicle parking is found first; path modification to satisfy minimum turning-radius constraint is performed based on Reeds-Shepp curve connections. Optimization efforts are included to remove extra maneuvers and to reduce length of the path. Afterwards waypoints are generated as reference for the vehicle to track. Perpendicular parking tests with several different start configurations are demonstrated; based on the test results the automated parking framework proposed in this paper is considered to be effective.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimental Test of Artificial Potential Field-Based Automobiles Automated Perpendicular Parking\",\"authors\":\"Yiqun Dong, You-peng Zhang, J. Ai\",\"doi\":\"10.1155/2016/2306818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automobiles automated perpendicular parking using Artificial Potential Field (APF) is discussed in this paper. The Unmanned Ground Vehicle (UGV) used for carrying out experiments is introduced first; UGV configuration, kinematics, and motion controller are included. Based on discretized form of the parking space, the APF is generated. Holonomic path for the vehicle parking is found first; path modification to satisfy minimum turning-radius constraint is performed based on Reeds-Shepp curve connections. Optimization efforts are included to remove extra maneuvers and to reduce length of the path. Afterwards waypoints are generated as reference for the vehicle to track. Perpendicular parking tests with several different start configurations are demonstrated; based on the test results the automated parking framework proposed in this paper is considered to be effective.\",\"PeriodicalId\":269774,\"journal\":{\"name\":\"International Journal of Vehicular Technology\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/2306818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/2306818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了基于人工势场的汽车垂直自动泊车。首先介绍了用于开展实验的无人地面飞行器(UGV);包括UGV配置,运动学和运动控制器。基于车位的离散化形式,生成有源滤波器。首先找到车辆停放的完整路径;基于reed - shepp曲线连接进行路径修改,以满足最小转弯半径约束。优化工作包括消除额外的机动和减少路径的长度。然后生成路径点作为车辆跟踪的参考。演示了几种不同启动配置下的垂直停车试验;试验结果表明,本文提出的自动泊车框架是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Test of Artificial Potential Field-Based Automobiles Automated Perpendicular Parking
Automobiles automated perpendicular parking using Artificial Potential Field (APF) is discussed in this paper. The Unmanned Ground Vehicle (UGV) used for carrying out experiments is introduced first; UGV configuration, kinematics, and motion controller are included. Based on discretized form of the parking space, the APF is generated. Holonomic path for the vehicle parking is found first; path modification to satisfy minimum turning-radius constraint is performed based on Reeds-Shepp curve connections. Optimization efforts are included to remove extra maneuvers and to reduce length of the path. Afterwards waypoints are generated as reference for the vehicle to track. Perpendicular parking tests with several different start configurations are demonstrated; based on the test results the automated parking framework proposed in this paper is considered to be effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信