{"title":"Dynamically reparameterized light fields","authors":"Aaron Isaksen, L. McMillan, S. Gortler","doi":"10.1145/344779.344929","DOIUrl":"https://doi.org/10.1145/344779.344929","url":null,"abstract":"This research further develops the light field and lumigraph image-based rendering methods and extends their utility. We present alternate parameterizations that permit 1) interactive rendering of moderately sampled light fields of scenes with significant, unknown depth variation and 2) low-cost, passive autostereoscopic viewing. Using a dynamic reparameterization, these techniques can be used to interactively render photographic effects such as variable focus and depth-of-field within a light field. The dynamic parameterization is independent of scene geometry and does not require actual or approximate geometry of the scene. We explore the frequency domain and ray-space aspects of dynamic reparameterization, and present an interactive rendering technique that takes advantage of today's commodity rendering hardware.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130521833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The EMOTE model for effort and shape","authors":"D. Chi, Mónica Costa, Liwei Zhao, N. Badler","doi":"10.1145/344779.352172","DOIUrl":"https://doi.org/10.1145/344779.352172","url":null,"abstract":"Human movements include limb gestures and postural attitude. Although many computer animation researchers have studied these classes of movements, procedurally generated movements still lack naturalness. We argue that looking only at the psychological notion of gesture is insufficient to capture movement qualities needed by animated charactes. We advocate that the domain of movement observation science, specifically Laban Movement Analysis (LMA) and its Effort and Shape components, provides us with valuable parameters for the form and execution of qualitative aspects of movements. Inspired by some tenets shared among LMA proponents, we also point out that Effort and Shape phrasing across movements and the engagement of the whole body are essential aspects to be considered in the search for naturalness in procedurally generated gestures. Finally, we present EMOTE (Expressive MOTion Engine), a 3D character animation system that applies Effort and Shape qualities to independently defined underlying movements and thereby generates more natural synthetic gestures.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122298225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Matusik, Chris Buehler, R. Raskar, S. Gortler, L. McMillan
{"title":"Image-based visual hulls","authors":"W. Matusik, Chris Buehler, R. Raskar, S. Gortler, L. McMillan","doi":"10.1145/344779.344951","DOIUrl":"https://doi.org/10.1145/344779.344951","url":null,"abstract":"In this paper, we describe an efficient image-based approach to computing and shading visual hulls from silhouette image data. Our algorithm takes advantage of epipolar geometry and incremental computation to achieve a constant rendering cost per rendered pixel. It does not suffer from the computation complexity, limited resolution, or quantization artifacts of previous volumetric approaches. We demonstrate the use of this algorithm in a real-time virtualized reality application running off a small number of video streams.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127138650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Bertalmío, G. Sapiro, V. Caselles, C. Ballester
{"title":"Image inpainting","authors":"M. Bertalmío, G. Sapiro, V. Caselles, C. Ballester","doi":"10.1145/344779.344972","DOIUrl":"https://doi.org/10.1145/344779.344972","url":null,"abstract":"Inpainting, the technique of modifying an image in an undetectable form, is as ancient as art itself. The goals and applications of inpainting are numerous, from the restoration of damaged paintings and photographs to the removal/replacement of selected objects. In this paper, we introduce a novel algorithm for digital inpainting of still images that attempts to replicate the basic techniques used by professional restorators. After the user selects the regions to be restored, the algorithm automatically fills-in these regions with information surrounding them. The fill-in is done in such a way that isophote lines arriving at the regions' boundaries are completed inside. In contrast with previous approaches, the technique here introduced does not require the user to specify where the novel information comes from. This is automatically done (and in a fast way), thereby allowing to simultaneously fill-in numerous regions containing completely different structures and surrounding backgrounds. In addition, no limitations are imposed on the topology of the region to be inpainted. Applications of this technique include the restoration of old photographs and damaged film; removal of superimposed text like dates, subtitles, or publicity; and the removal of entire objects from the image like microphones or wires in special effects.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127888768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Out-of-core simplification of large polygonal models","authors":"Peter Lindstrom","doi":"10.1145/344779.344912","DOIUrl":"https://doi.org/10.1145/344779.344912","url":null,"abstract":"We present an algorithm for out-of-core simplification of large polygonal datasets that are too complex to fit in main memory. The algorithm extends the vertex clustering scheme of Rossignac and Borrel [13] by using error quadric information for the placement of each cluster's representative vertex, which better preserves fine details and results in a low mean geometric error. The use of quadrics instead of the vertex grading approach in [13] has the additional benefits of requiring less disk space and only a single pass over the model rather than two. The resulting linear time algorithm allows simplification of datasets of arbitrary complexity. In order to handle degenerate quadrics associated with (near) flat regions and regions with zero Gaussian curvature, we present a robust method for solving the corresponding underconstrained least-squares problem. The algorithm is able to detect these degeneracies and handle them gracefully. Key features of the simplification method include a bounded Hausdorff error, low mean geometric error, high simplification speed (up to 100,000 triangles/second reduction), output (but not input) sensitive memory requirements, no disk space overhead, and a running time that is independent of the order in which vertices and triangles occur in the mesh.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128142670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Timewarp rigid body simulation","authors":"B. Mirtich","doi":"10.1145/344779.344866","DOIUrl":"https://doi.org/10.1145/344779.344866","url":null,"abstract":"The traditional high-level algorithms for rigid body simulation work well for moderate numbers of bodies but scale poorly to systems of hundreds or more moving, interacting bodies. The problem is unnecessary synchronization implicit in these methods. Jefferson's timewarp algorithm [22] is a technique for alleviating this problem in parallel discrete event simulation. Rigid body dynamics, though a continuous process, exhibits many aspects of a discrete one. With modification, the timewarp algorithm can be used in a uniprocessor rigid body simulator to give substantial performance improvements for simulations with large numbers of bodies. This paper describes the limitations of the traditional high-level simulation algorithms, introduces Jefferson's algorithm, and extends and optimizes it for the rigid body case. It addresses issues particular to rigid body simulation, such as collision detection and contact group management, and describes how to incorporate these into the timewarp framework. Quantitative experimental results indicate that the timewarp algorithm offers significant performance improvements over traditional high-level rigid body simulation algorithms, when applied to systems with hundreds of bodies. It also helps pave the way to parallel implementations, as the paper discusses.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115358307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computer-generated pen-and-ink illustration of trees","authors":"O. Deussen, T. Strothotte","doi":"10.1145/344779.344792","DOIUrl":"https://doi.org/10.1145/344779.344792","url":null,"abstract":"We present a method for automatically rendering pen-and-ink illustrations of trees. A given 3-d tree model is illustrated by the tree skeleton and a visual representation of the foliage using abstract drawing primitives. Depth discontinuities are used to determine what parts of the primitives are to be drawn; a hybrid pixel-based and analytical algorithm allows us to deal efficiently with the complex geometric data. Using the proposed method we are able to generate illustrations with different drawing styles and levels of abstraction. The illustrations generated are spatial coherent, enabling us to create animations of sketched environments. Applications of our results are found in architecture, animation and landscaping.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115666841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, T. Nishita
{"title":"A simple, efficient method for realistic animation of clouds","authors":"Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, T. Nishita","doi":"10.1145/344779.344795","DOIUrl":"https://doi.org/10.1145/344779.344795","url":null,"abstract":"This paper proposes a simple and computationally inexpensive method for animation of clouds. The cloud evolution is simulated using cellular automaton that simplifies the dynamics of cloud formation. The dynamics are expressed by several simple transition rules and their complex motion can be simulated with a small amount of computation. Realistic images are then created using one of the standard graphics APIs, OpenGL. This makes it possible to utilize graphics hardware, resulting in fast image generation. The proposed method can realize the realistic motion of clouds, shadows cast on the ground, and shafts of light through clouds.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122788434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Animating explosions","authors":"Gary D. Yngve, J. F. O'Brien, J. Hodgins","doi":"10.1145/344779.344801","DOIUrl":"https://doi.org/10.1145/344779.344801","url":null,"abstract":"In this paper, we introduce techniques for animating explosions and their effects. The primary effect of an explosion is a disturbance that causes a shock wave to propagate through the surrounding medium. The disturbance determines the behavior of nearly all other secondary effects seen in explosion. We simulate the propagation of an explosion through the surrounding air using a computational fluid dynamics model based on the equations for compressible, viscous flow. To model the numerically stable formation of shocks along blast wave fronts, we employ an integration method that can handle steep pressure gradients without introducing inappropriate damping. The system includes two-way coupling between solid objects and surrounding fluid. Using this technique, we can generate a variety of effects including shaped explosive charges, a projectile propelled from a chamber by an explosion, and objects damaged by a blast. With appropriate rendering techniques, our explosion model can be used to create such visual effects as fireballs, dust clouds, and the refraction of light caused by a blast wave.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"497 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123070698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Example-based hinting of true type fonts","authors":"Douglas E. Zongker, G. Wade, D. Salesin","doi":"10.1145/344779.344969","DOIUrl":"https://doi.org/10.1145/344779.344969","url":null,"abstract":"Hinting in TrueType is a time-consuming manual process in which a typographer creates a sequence of instructions for better fitting the characters of a font to a grid of pixels. In this paper, we propose a new method for automatically hinting TrueType fonts by transferring hints of one font to another. Given a hinted source font and a target font without hints, our method matches the outlines of corresponding glyphs in each font, and then translates all of the individual hints for each glyph from the source to the target font. It also translates the control value table (CVT) entries, which are used to unify feature sizes across a font. The resulting hinted font already provides a great improvement over the unhinted version. More importantly, the translated hints, which preserve the sound, hand-designed hinting structure of the original font, provide a very good starting point for a professional typographer to complete and fine-tune, saving time and increasing productivity. We demonstrate our approach with examples of automatically hinted fonts at typical display sizes and screen resolutions. We also provide estimates of the time saved by a professional typographer in hinting new fonts using this semi-automatic approach.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"468 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127415620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}