Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)最新文献

筛选
英文 中文
Pragmatic analysis based query expansion for Chinese cuisine QA service system 基于语用分析的中餐问答服务系统查询扩展
Ling Xia, F. Ren
{"title":"Pragmatic analysis based query expansion for Chinese cuisine QA service system","authors":"Ling Xia, F. Ren","doi":"10.1109/NLPKE.2010.5587785","DOIUrl":"https://doi.org/10.1109/NLPKE.2010.5587785","url":null,"abstract":"This paper proposes a query expansion method for cooking question answering system based on pragmatic analysis. In our approach, the results of question analysis is used. The original queries are generated by means of the question subject, then the query terms are expanded based on pragmatic function. When submitting the expended queries to Google search engine to retrieve related passages, we get an overall improvement of 36.2% on the mean average precision.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130998929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image understanding for converting images into natural language text sentences 将图像转换为自然语言文本句子的图像理解
N. Bourbakis
{"title":"Image understanding for converting images into natural language text sentences","authors":"N. Bourbakis","doi":"10.1109/NLPKE.2010.5587864","DOIUrl":"https://doi.org/10.1109/NLPKE.2010.5587864","url":null,"abstract":"The efficient processing, association and understanding of multimedia based events or multi-modal information is a very important research field with a great variety of applications, such as knowledge discovery, document understanding, human computer interaction, etc. A good approach to this important issue is the development of a common platform for converting different modalities (such as images, text, etc) into the same medium and associating them for efficient processing and understanding. Thus, this talk here presents the development of a methodology capable for automatically converting images into natural language (NL) text sentences using image processing-analysis methods and graphs with attributes for object recognition, and image understanding. Then it converts graph representations into NL text sentences. Moreover, it presents a methodology for transforming NL sentences into Graph representations and then into Stochastic Petri-nets (SPN) descriptions in order to offer a common model of representation of multimodal information and at the same time a way of associating “activities or changes” in image frames for events representation and interpretation. The selection of the SPN graph model is due to its capability for efficiently representing structural and functional knowledge where other models cannot. Simple illustrative examples are provided for proving the concept presented here.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131050916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A combination method of CRF with syntactic rules to identify opinion_holder 一种结合CRF和语法规则来识别opinion_holder的方法
Yuan Kuang, Yanquan Zhou, Huacan He
{"title":"A combination method of CRF with syntactic rules to identify opinion_holder","authors":"Yuan Kuang, Yanquan Zhou, Huacan He","doi":"10.1109/NLPKE.2010.5587848","DOIUrl":"https://doi.org/10.1109/NLPKE.2010.5587848","url":null,"abstract":"This paper presents another aspect of sentiment analysis: identifying opinion_holder in the opinionated sentences. To extract opinion_holder, we firstly explore Conditional Random Field(CRF) based on six features including contextual, opinionated_trigger words, POS tags, named entity, dependency and proposed sentence structure feature, and dependency is adjusted to be better helpful for containing contextual dependency information. Then we propose two novel syntactic rules with opinionated_trigger words to directly identify opinion_holder from the parse trees. The results show that the precision from CRF is much higher than that of syntactic rules, while the recall is lower than. So we combine CRF with syntactic rules used as additional three features including HolderNode, ChunkPosition and Paths for the CRF to train our model. The combination results of the system illustrate the higher recall and higher F-measure under the almost same high precision.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131450001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Affix-augmented stem-based language model for persian 波斯语词缀增强词干语言模型
Heshaam Faili, H. Ravanbakhsh
{"title":"Affix-augmented stem-based language model for persian","authors":"Heshaam Faili, H. Ravanbakhsh","doi":"10.1109/NLPKE.2010.5587823","DOIUrl":"https://doi.org/10.1109/NLPKE.2010.5587823","url":null,"abstract":"Language modeling is used in many NLP applications like machine translation, POS tagging, speech recognition and information retrieval. It assigns a probability to a sequence of words. This task becomes a challenging problem for high inflectional languages. In this paper we investigate standard statistical language models on the Persian as an inflectional language. We propose two variations of morphological language models that rely on a morphological analyzer to manipulate the dataset before modeling. Then we discuss shortcoming of these models, and introduce a novel approach that exploits the structure of the language and produces more accurate. Experimental results are encouraging especially when we use n-gram models with small training dataset.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134173801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Co-construction of ontology-based knowledge base through the Web: Theory and practice 基于本体的Web知识库协同构建:理论与实践
Keliang Zhang, Qinlong Fei
{"title":"Co-construction of ontology-based knowledge base through the Web: Theory and practice","authors":"Keliang Zhang, Qinlong Fei","doi":"10.1109/NLPKE.2010.5587804","DOIUrl":"https://doi.org/10.1109/NLPKE.2010.5587804","url":null,"abstract":"Ontology-based knowledge base plays an increasingly important role in improving the precision and recall rate of a retrieval system. Based on Distributed Learning theory, a novel approach for the co-construction of ontology-based knowledge base is explored. Making use of the platform set up for the co-construction and sharing of domain-specific knowledge through the Web, we constructed an ontology-based knowledge base of airborne radar field. This study is expected to contribute to the effective improvement of precision and recall rate of information retrieval in the airborne radar field. Hopefully, the mode we designed and adopted for the co-construction and sharing of domain-specific knowledge base could be enlightening for other similar studies.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133152381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sentiment word identification using the maximum entropy model 基于最大熵模型的情感词识别
Xiaoxu Fei, Huizhen Wang, Jingbo Zhu
{"title":"Sentiment word identification using the maximum entropy model","authors":"Xiaoxu Fei, Huizhen Wang, Jingbo Zhu","doi":"10.1109/NLPKE.2010.5587811","DOIUrl":"https://doi.org/10.1109/NLPKE.2010.5587811","url":null,"abstract":"This paper addresses the issue of sentiment word identification given an opinionated sentence, which is very important in sentiment analysis tasks. The most common way to tackle this problem is to utilize a readily available sentiment lexicon such as HowNet or SentiWordNet to determine whether a word is a sentiment word. However, in practice, words existing in the lexicon sometimes can not express sentiment tendency in a certain context while other words out of the lexicon do express. To address this challenge, this paper presents an approach based on maximum-entropy classification model to identify sentiment words given an opinionated sentence. Experimental results show that our approach outperforms baseline lexicon-based methods.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133917926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Syntactic correlations of prosodic phrase in broadcasting news speech 广播新闻讲话中韵律短语的句法关联
Yu Zou, Jiyuan Wu, W. He, Min Hou, Yonglin Teng
{"title":"Syntactic correlations of prosodic phrase in broadcasting news speech","authors":"Yu Zou, Jiyuan Wu, W. He, Min Hou, Yonglin Teng","doi":"10.1109/NLPKE.2010.5587770","DOIUrl":"https://doi.org/10.1109/NLPKE.2010.5587770","url":null,"abstract":"The interrelation between prosody and syntax becomes more and more important in speech processing. This paper is intended to analyze the syntactic correlations of prosodic phrase in broadcasting news speech. The research results in the followings: Firstly, the C-PP, which there is a stable prosodic pattern of pitch contour within its rhythmic chunking, has a flexible syntactic structure and stable semantic expression. Secondly, we find that the syntactic structure is more complex than the prosodic structure, and some conjunction and particle more likely attached to the end of left structure or the beginning of right one and form a prosodic word. If it has just four lexical words including the conjunction or particle they form a prosodic word by itself. That is to say, it has very great flexibility in prosodic structures for conjunctions and particles.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122622884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A study on disambiguation of structure “prep+n1+de+n2” for Chinese information processing 汉语信息处理中“prep+n1+de+n2”结构的消歧研究
Song Gao, Yiyi Zhao, Haitao Liu, Zhiwei Feng
{"title":"A study on disambiguation of structure “prep+n1+de+n2” for Chinese information processing","authors":"Song Gao, Yiyi Zhao, Haitao Liu, Zhiwei Feng","doi":"10.1109/NLPKE.2010.5587784","DOIUrl":"https://doi.org/10.1109/NLPKE.2010.5587784","url":null,"abstract":"According to Potential Ambiguity Theory, we analyzed “prep+n1+ de+n2” phrase in this paper. We focus on how to make computer automatically detect and process such syntactic ambiguity structure. The purpose is to raise the accuracy rate of the automatic identification and analysis of natural language. At the same time, we take this structure for example, in order to help study other potential ambiguity structures.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127794828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying emotion topic — An unsupervised hybrid approach with Rhetorical Structure and Heuristic Classifier 情感主题识别——一种基于修辞结构和启发式分类器的无监督混合方法
Dipankar Das, Sivaji Bandyopadhyay
{"title":"Identifying emotion topic — An unsupervised hybrid approach with Rhetorical Structure and Heuristic Classifier","authors":"Dipankar Das, Sivaji Bandyopadhyay","doi":"10.1109/NLPKE.2010.5587777","DOIUrl":"https://doi.org/10.1109/NLPKE.2010.5587777","url":null,"abstract":"This paper describes an unsupervised hybrid approach to identify emotion topic(s) from English blog sentences. The baseline system is based on object related dependency relations from parsed constituents. However, the inclusion of the topic related thematic roles present in the verb based syntactic argument structure improves the performance of the baseline system. The argument structures are extracted using VerbNet. The unsupervised hybrid approach consists of two phases; firstly, the information of Rhetorical Structure (RS) is extracted to identify the target span corresponding to the emotional expression from each sentence. Secondly, as an individual target span contains one or more topics corresponding to an emotional expression, a Heuristic Classifier (HC) is designed to identify each of the topic spans associated in the target span. The classifier uses the information of Emotion Holder (EH), Named Entities (NE) and four types of Similarity features to identify the phrase level components of the topic spans. The system achieves average recall, precision and F-score of 60.37%, 57.49% and 58.88% respectively with respect to all emotion classes on 500 annotated sentences containing single or multiple emotion topics.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129041439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Weakly supervised relevance feedback based on an improved language model 基于改进语言模型的弱监督相关反馈
Xinsheng Li, Si Li, Weiran Xu, Guang Chen, Jun Guo
{"title":"Weakly supervised relevance feedback based on an improved language model","authors":"Xinsheng Li, Si Li, Weiran Xu, Guang Chen, Jun Guo","doi":"10.1109/NLPKE.2010.5587859","DOIUrl":"https://doi.org/10.1109/NLPKE.2010.5587859","url":null,"abstract":"Relevance feedback, which traditionally uses the terms in the relevant documents to enrich the user's initial query, is an effective method for improving retrieval performance. This approach has another problem is that Relevance feedback assumes that most frequent terms in the feedback documents are useful for the retrieval. In fact, the reports of some experiments show that it does not hold in reality many expansion terms identified in traditional approaches are indeed unrelated to the query and harmful to the retrieval. In this paper, we propose to select better and more relevant documents with a clustering algorithm. And then we present an improved Language Model to help us identify the good terms from those relevant documents. Ours experiments on the 2008 TREC collection show that retrieval effectiveness can be much improved when the improved Language Model is used.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127379863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信