World journal of stem cells最新文献

筛选
英文 中文
Wharton’s jelly mesenchymal stem cells: Future regenerative medicine for clinical applications in mitigation of radiation injury 沃顿果冻间充质干细胞:未来再生医学在减轻辐射损伤方面的临床应用
IF 3.6 3区 医学
World journal of stem cells Pub Date : 2024-07-26 DOI: 10.4252/wjsc.v16.i7.742
Prashasti Sharma, D. Maurya
{"title":"Wharton’s jelly mesenchymal stem cells: Future regenerative medicine for clinical applications in mitigation of radiation injury","authors":"Prashasti Sharma, D. Maurya","doi":"10.4252/wjsc.v16.i7.742","DOIUrl":"https://doi.org/10.4252/wjsc.v16.i7.742","url":null,"abstract":"Wharton’s jelly mesenchymal stem cells (WJ-MSCs) are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries. WJ-MSCs are more naïve and have a better safety profile, making them suitable for both autologous and allogeneic transplantations. This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries. In this review, we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses. Finally, the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled.","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141800702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current perspectives on mesenchymal stem cells as a potential therapeutic strategy for non-alcoholic fatty liver disease 间充质干细胞作为非酒精性脂肪肝潜在治疗策略的当前视角
IF 3.6 3区 医学
World journal of stem cells Pub Date : 2024-07-26 DOI: 10.4252/wjsc.v16.i7.760
Yan Jiang, N. Yusoff, Jiang Du, E. Moses, Jun-Tang Lin
{"title":"Current perspectives on mesenchymal stem cells as a potential therapeutic strategy for non-alcoholic fatty liver disease","authors":"Yan Jiang, N. Yusoff, Jiang Du, E. Moses, Jun-Tang Lin","doi":"10.4252/wjsc.v16.i7.760","DOIUrl":"https://doi.org/10.4252/wjsc.v16.i7.760","url":null,"abstract":"Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant health challenge, characterized by its widespread prevalence, intricate natural progression and multifaceted pathogenesis. Although NAFLD initially presents as benign fat accumulation, it may progress to steatosis, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Mesenchymal stem cells (MSCs) are recognized for their intrinsic self-renewal, superior biocompatibility, and minimal immunogenicity, positioning them as a therapeutic innovation for liver diseases. Therefore, this review aims to elucidate the potential roles of MSCs in alleviating the progression of NAFLD by alteration of underlying molecular pathways, including glycolipid metabolism, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. The insights are expected to provide further understanding of the potential of MSCs in NAFLD therapeutics, and support the development of MSC-based therapy in the treatment of NAFLD.","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141801952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additional comments on extracellular vesicles derived from mesenchymal stem cells mediate extracellular matrix remodeling in osteoarthritis 关于间充质干细胞衍生的细胞外泡介导骨关节炎细胞外基质重塑的补充评论
IF 3.6 3区 医学
World journal of stem cells Pub Date : 2024-07-26 DOI: 10.4252/wjsc.v16.i7.739
Hang Pei, Yi Zhang, Chao Wang, Bang-Jian He
{"title":"Additional comments on extracellular vesicles derived from mesenchymal stem cells mediate extracellular matrix remodeling in osteoarthritis","authors":"Hang Pei, Yi Zhang, Chao Wang, Bang-Jian He","doi":"10.4252/wjsc.v16.i7.739","DOIUrl":"https://doi.org/10.4252/wjsc.v16.i7.739","url":null,"abstract":"Recently, we read an article published by the Yang et al . The results of this study indicated that engineered exosomes loaded with microRNA-29a (miR-29a) alleviate knee inflammation and maintain extracellular matrix stability in Sprague Dawley rats. The study’s results provide useful information for treating knee osteoarthritis (KOA). This letter, shares our perspectives on treating KOA using engineered exosomes for miR-29a.","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141798778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota modulating intestinal stem cell differentiation. 肠道微生物群调节肠道干细胞分化
IF 3.6 3区 医学
World journal of stem cells Pub Date : 2024-06-26 DOI: 10.4252/wjsc.v16.i6.619
Lin He, Chen Zhu, Xiang-Feng Zhou, Shu-E Zeng, Le Zhang, Kuan Li
{"title":"Gut microbiota modulating intestinal stem cell differentiation.","authors":"Lin He, Chen Zhu, Xiang-Feng Zhou, Shu-E Zeng, Le Zhang, Kuan Li","doi":"10.4252/wjsc.v16.i6.619","DOIUrl":"10.4252/wjsc.v16.i6.619","url":null,"abstract":"<p><p>Proliferation and differentiation of intestinal stem cell (ISC) to replace damaged gut mucosal epithelial cells in inflammatory states is a critical step in ameliorating gut inflammation. However, when this disordered proliferation continues, it induces the ISC to enter a cancerous state. The gut microbiota on the free surface of the gut mucosal barrier is able to interact with ISC on a sustained basis. Microbiota metabolites are able to regulate the proliferation of gut stem and progenitor cells through transcription factors, while in steady state, differentiated colonocytes are able to break down such metabolites, thereby protecting stem cells at the gut crypt. In the future, the gut flora and its metabolites mediating the regulation of ISC differentiation will be a potential treatment for enteropathies.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212547/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Safety and efficiency of Wharton's Jelly-derived mesenchymal stem cell administration in patients with traumatic brain injury: First results of a phase I study. 脑外伤患者服用沃顿果冻间充质干细胞的安全性和有效性:一期研究的初步结果。
IF 3.6 3区 医学
World journal of stem cells Pub Date : 2024-06-26 DOI: 10.4252/wjsc.v16.i6.641
Serdar Kabatas, Erdinç Civelek, Osman Boyalı, Gülseli Berivan Sezen, Omer Ozdemir, Yeliz Bahar-Ozdemir, Necati Kaplan, Eyüp Can Savrunlu, Erdal Karaöz
{"title":"Safety and efficiency of Wharton's Jelly-derived mesenchymal stem cell administration in patients with traumatic brain injury: First results of a phase I study.","authors":"Serdar Kabatas, Erdinç Civelek, Osman Boyalı, Gülseli Berivan Sezen, Omer Ozdemir, Yeliz Bahar-Ozdemir, Necati Kaplan, Eyüp Can Savrunlu, Erdal Karaöz","doi":"10.4252/wjsc.v16.i6.641","DOIUrl":"10.4252/wjsc.v16.i6.641","url":null,"abstract":"<p><strong>Background: </strong>Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. Stem cell transplantation has evolved as a novel treatment modality in the management of TBI, as it has the potential to arrest the degeneration and promote regeneration of new cells in the brain. Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) have recently shown beneficial effects in the functional recovery of neurological deficits.</p><p><strong>Aim: </strong>To evaluate the safety and efficiency of MSC therapy in TBI.</p><p><strong>Methods: </strong>We present 6 patients, 4 male and 2 female aged between 21 and 27 years who suffered a TBI. These 6 patients underwent 6 doses of intrathecal, intramuscular (i.m.) and intravenous transplantation of WJ-MSCs at a target dose of 1 × 10<sup>6</sup>/kg for each application route. Spasticity was assessed using the Modified Ashworth scale (MAS), motor function according to the Medical Research Council Muscle Strength Scale, quality of life was assessed by the Functional Independence Measure (FIM) scale and Karnofsky Performance Status scale.</p><p><strong>Results: </strong>Our patients showed only early, transient complications, such as subfebrile fever, mild headache, and muscle pain due to i.m. injection, which resolved within 24 h. During the one year follow-up, no other safety issues or adverse events were reported. These 6 patients showed improvements in their cognitive abilities, muscle spasticity, muscle strength, performance scores and fine motor skills when compared before and after the intervention. MAS values, which we used to assess spasticity, were observed to statistically significantly decrease for both left and right sides (<i>P</i> < 0.001). The FIM scale includes both motor scores (<i>P</i> < 0.05) and cognitive scores (<i>P</i> < 0.001) and showed a significant increase in pretest posttest analyses. The difference observed in the participants' Karnofsky Performance Scale values pre and post the intervention was statistically significant (<i>P</i> < 0.001).</p><p><strong>Conclusion: </strong>This study showed that cell transplantation has a safe, effective and promising future in the management of TBI.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141471039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomes from umbilical cord mesenchymal stromal cells promote the collagen production of fibroblasts from pelvic organ prolapse. 来自脐带间充质基质细胞的外泌体可促进盆腔器官脱垂成纤维细胞产生胶原蛋白。
IF 3.6 3区 医学
World journal of stem cells Pub Date : 2024-06-26 DOI: 10.4252/wjsc.v16.i6.708
Lei-Mei Xu, Xin-Xin Yu, Ning Zhang, Yi-Song Chen
{"title":"Exosomes from umbilical cord mesenchymal stromal cells promote the collagen production of fibroblasts from pelvic organ prolapse.","authors":"Lei-Mei Xu, Xin-Xin Yu, Ning Zhang, Yi-Song Chen","doi":"10.4252/wjsc.v16.i6.708","DOIUrl":"10.4252/wjsc.v16.i6.708","url":null,"abstract":"<p><strong>Background: </strong>Pelvic organ prolapse (POP) involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity, and vaginal structure is an essential factor. In POP, the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions. The intricate etiology of POP and the prohibition of transvaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development. Human umbilical cord mesenchymal stromal cells (hucMSCs) present limitations, but their exosomes (hucMSC-Exo) are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling.</p><p><strong>Aim: </strong>To investigate the effects of hucMSC-Exo on the functions of primary vaginal fibroblasts and to elucidate the underlying mechanism involved.</p><p><strong>Methods: </strong>Human vaginal wall collagen content was assessed by Masson's trichrome and Sirius blue staining. Gene expression differences in fibroblasts from patients with and without POP were assessed <i>via</i> RNA sequencing (RNA-seq). The effects of hucMSC-Exo on fibroblasts were determined <i>via</i> functional experiments <i>in vitro</i>. RNA-seq data from fibroblasts exposed to hucMSC-Exo and microRNA (miRNA) sequencing data from hucMSC-Exo were jointly analyzed to identify effective molecules.</p><p><strong>Results: </strong>In POP, the vaginal wall exhibited abnormal collagen distribution and reduced fibroblast 1 quality and quantity. Treatment with 4 or 6 μg/mL hucMSC-Exo suppressed inflammation in POP group fibroblasts, stimulated primary fibroblast growth, and elevated collagen I (Col1) production <i>in vitro</i>. High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11 (MMP11) expression.</p><p><strong>Conclusion: </strong>HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression <i>in vitro</i>. Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression. HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141471111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Searching for the optimal precondition procedure for mesenchymal stem/stromal cell treatment: Facts and perspectives. 寻找间充质干细胞/基质细胞治疗的最佳前提条件程序:事实与展望。
IF 3.6 3区 医学
World journal of stem cells Pub Date : 2024-06-26 DOI: 10.4252/wjsc.v16.i6.615
Yu-Dong Zhao, Yong-Can Huang, Wei-Shi Li
{"title":"Searching for the optimal precondition procedure for mesenchymal stem/stromal cell treatment: Facts and perspectives.","authors":"Yu-Dong Zhao, Yong-Can Huang, Wei-Shi Li","doi":"10.4252/wjsc.v16.i6.615","DOIUrl":"10.4252/wjsc.v16.i6.615","url":null,"abstract":"<p><p>Mesenchymal stem/stromal cells are potential optimal cell sources for stem cell therapies, and pretreatment has proven to enhance cell vitality and function. In a recent publication, Li <i>et al</i> explored a new combination of pretreatment conditions. Here, we present an editorial to comment on their work and provide our view on mesenchymal stem/stromal cell precondition.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212554/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141471040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Umbilical cord mesenchymal stem cell exosomes alleviate necrotizing enterocolitis in neonatal mice by regulating intestinal epithelial cells autophagy. 脐带间充质干细胞外泌体通过调节肠上皮细胞自噬缓解新生小鼠的坏死性小肠结肠炎
IF 3.6 3区 医学
World journal of stem cells Pub Date : 2024-06-26 DOI: 10.4252/wjsc.v16.i6.728
Lin Zhu, Lu He, Wu Duan, Bo Yang, Ning Li
{"title":"Umbilical cord mesenchymal stem cell exosomes alleviate necrotizing enterocolitis in neonatal mice by regulating intestinal epithelial cells autophagy.","authors":"Lin Zhu, Lu He, Wu Duan, Bo Yang, Ning Li","doi":"10.4252/wjsc.v16.i6.728","DOIUrl":"10.4252/wjsc.v16.i6.728","url":null,"abstract":"<p><strong>Background: </strong>Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that affects premature infants. Although mounting evidence supports the therapeutic effect of exosomes on NEC, the underlying mechanisms remain unclear.</p><p><strong>Aim: </strong>To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell (UCMSCs) exosomes, as well as their potential in alleviating NEC in neonatal mice.</p><p><strong>Methods: </strong>NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide (LPS), after which the mice received human UCMSC exosomes (hUCMSC-exos). The control mice were allowed to breastfeed with their dams. Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting. Colon tissues were collected from NEC neonates and analyzed by immunofluorescence. Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.</p><p><strong>Results: </strong>We found that autophagy is overactivated in intestinal epithelial cells during NEC, resulting in reduced expression of tight junction proteins and an increased inflammatory response. The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy. We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.</p><p><strong>Conclusion: </strong>These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment. These findings also enhance our understanding of the role of the autophagy mechanism in NEC, offering potential avenues for identifying new therapeutic targets.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141471041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesenchymal stem cells-extracellular vesicles alleviate pulmonary fibrosis by regulating immunomodulators. 间充质干细胞-细胞外囊泡通过调节免疫调节剂缓解肺纤维化。
IF 3.6 3区 医学
World journal of stem cells Pub Date : 2024-06-26 DOI: 10.4252/wjsc.v16.i6.670
Ying Gao, Mei-Fang Liu, Yang Li, Xi Liu, Yu-Jie Cao, Qian-Fa Long, Jun Yu, Jian-Ying Li
{"title":"Mesenchymal stem cells-extracellular vesicles alleviate pulmonary fibrosis by regulating immunomodulators.","authors":"Ying Gao, Mei-Fang Liu, Yang Li, Xi Liu, Yu-Jie Cao, Qian-Fa Long, Jun Yu, Jian-Ying Li","doi":"10.4252/wjsc.v16.i6.670","DOIUrl":"10.4252/wjsc.v16.i6.670","url":null,"abstract":"<p><strong>Background: </strong>Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation, causing structural damage and lung failure. Stem cell therapy and mesenchymal stem cells-extracellular vesicles (MSC-EVs) offer new hope for PF treatment.</p><p><strong>Aim: </strong>To investigate the therapeutic potential of MSC-EVs in alleviating fibrosis, oxidative stress, and immune inflammation in A549 cells and bleomycin (BLM)-induced mouse model.</p><p><strong>Methods: </strong>The effect of MSC-EVs on A549 cells was assessed by fibrosis markers [collagen I and α-smooth muscle actin (α-SMA), oxidative stress regulators [nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and inflammatory regulators [nuclear factor-kappaB (NF-κB) p65, interleukin (IL)-1β, and IL-2]. Similarly, they were assessed in the lungs of mice where PF was induced by BLM after MSC-EV transfection. MSC-EVs ion PF mice were detected by pathological staining and western blot. Single-cell RNA sequencing was performed to investigate the effects of the MSC-EVs on gene expression profiles of macrophages after modeling in mice.</p><p><strong>Results: </strong>Transforming growth factor (TGF)-β1 enhanced fibrosis in A549 cells, significantly increasing collagen I and α-SMA levels. Notably, treatment with MSC-EVs demonstrated a remarkable alleviation of these effects. Similarly, the expression of oxidative stress regulators, such as Nrf2 and HO-1, along with inflammatory regulators, including NF-κB p65 and IL-1β, were mitigated by MSC-EV treatment. Furthermore, in a parallel manner, MSC-EVs exhibited a downregulatory impact on collagen deposition, oxidative stress injuries, and inflammatory-related cytokines in the lungs of mice with PF. Additionally, the mRNA sequencing results suggested that BLM may induce PF in mice by upregulating pulmonary collagen fiber deposition and triggering an immune inflammatory response. The findings collectively highlight the potential therapeutic efficacy of MSC-EVs in ameliorating fibrotic processes, oxidative stress, and inflammatory responses associated with PF.</p><p><strong>Conclusion: </strong>MSC-EVs could ameliorate fibrosis <i>in vitro</i> and <i>in vivo</i> by downregulating collagen deposition, oxidative stress, and immune-inflammatory responses.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141471112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outcomes of combined mitochondria and mesenchymal stem cells-derived exosome therapy in rat acute respiratory distress syndrome and sepsis. 线粒体和间充质干细胞衍生外泌体联合疗法对大鼠急性呼吸窘迫综合征和败血症的疗效。
IF 3.6 3区 医学
World journal of stem cells Pub Date : 2024-06-26 DOI: 10.4252/wjsc.v16.i6.690
Kun-Chen Lin, Wen-Feng Fang, Jui-Ning Yeh, John Y Chiang, Hsin-Ju Chiang, Pei-Lin Shao, Pei-Hsun Sung, Hon-Kan Yip
{"title":"Outcomes of combined mitochondria and mesenchymal stem cells-derived exosome therapy in rat acute respiratory distress syndrome and sepsis.","authors":"Kun-Chen Lin, Wen-Feng Fang, Jui-Ning Yeh, John Y Chiang, Hsin-Ju Chiang, Pei-Lin Shao, Pei-Hsun Sung, Hon-Kan Yip","doi":"10.4252/wjsc.v16.i6.690","DOIUrl":"10.4252/wjsc.v16.i6.690","url":null,"abstract":"<p><strong>Background: </strong>The treatment of acute respiratory distress syndrome (ARDS) complicated by sepsis syndrome (SS) remains challenging.</p><p><strong>Aim: </strong>To investigate whether combined adipose-derived mesenchymal-stem-cells (ADMSCs)-derived exosome (EX<sup>AD</sup>) and exogenous mitochondria (mito<sup>Ex</sup>) protect the lung from ARDS complicated by SS.</p><p><strong>Methods: </strong><i>In vitro</i> study, including L2 cells treated with lipopolysaccharide (LPS) and <i>in vivo</i> study including male-adult-SD rats categorized into groups 1 (sham-operated-control), 2 (ARDS-SS), 3 (ARDS-SS + EX<sup>AD</sup>), 4 (ARDS-SS + mito<sup>Ex</sup>), and 5 (ARDS-SS + EX<sup>AD</sup> + mito<sup>Ex</sup>), were included in the present study.</p><p><strong>Results: </strong><i>In vitro</i> study showed an abundance of mito<sup>Ex</sup> found in recipient-L2 cells, resulting in significantly higher mitochondrial-cytochrome-C, adenosine triphosphate and relative mitochondrial DNA levels (<i>P</i> < 0.001). The protein levels of inflammation [interleukin (IL)-1β/tumor necrosis factor (TNF)-α/nuclear factor-κB/toll-like receptor (TLR)-4/matrix-metalloproteinase (MMP)-9/oxidative-stress (NOX-1/NOX-2)/apoptosis (cleaved-caspase3/cleaved-poly (ADP-ribose) polymerase)] were significantly attenuated in lipopolysaccharide (LPS)-treated L2 cells with EX<sup>AD</sup> treatment than without EX<sup>AD</sup> treatment, whereas the protein expressions of cellular junctions [occluding/β-catenin/zonula occludens (ZO)-1/E-cadherin] exhibited an opposite pattern of inflammation (all <i>P</i> < 0.001). Animals were euthanized by 72 h post-48 h-ARDS induction, and lung tissues were harvested. By 72 h, flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflammatory cells (Ly6G+/CD14+/CD68+/CD11<sup>b/c</sup>+/myeloperoxidase+) and albumin were lowest in group 1, highest in group 2, and significantly higher in groups 3 and 4 than in group 5 (all <i>P</i> < 0.0001), whereas arterial oxygen-saturation (SaO<sub>2</sub>%) displayed an opposite pattern of albumin among the groups. Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers (CD68+/γ-H2AX) displayed an identical pattern of SaO<sub>2</sub>% among the groups (all <i>P</i> < 0.0001). The protein expressions of inflammatory (TLR-4/MMP-9/IL-1β/TNF-α)/oxidative stress (NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged (cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic (beclin-1/Atg-5/ratio of LC3B-II/LC3B-I) biomarkers exhibited a similar manner, whereas antioxidants [nuclear respiratory factor (Nrf)-1/Nrf-2]/cellular junctions (ZO-1/E-cadherin)/mitochondrial electron transport chain (complex I-V) exhibited an opposite manner of albumin among the groups (all <i>P</i> < 0.0001).</p><p><strong>Conclusion: </strong>Combined EX<sup>AD</sup>-mito<sup>Ex</sup> therapy was better than merely one for protecting the lu","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141471113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信