{"title":"WDR36 inhibits the osteogenic differentiation and migration of periodontal ligament stem cells.","authors":"Yi Wang, Feng-Qiu Zhang, Zhi-Peng Fan, Xin-Ling Zhu, Wan-Hao Yan, Xiu-Li Zhang","doi":"10.4252/wjsc.v17.i2.99132","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Periodontitis is an inflammatory disease caused by the host's immune response and various interactions between pathogens, which lead to the loss of connective tissue and bone. In recent years, mesenchymal stem cell (SC) transplantation technology has become a research hotspot, which can form periodontal ligament, cementum, and alveolar bone through proliferation and differentiation.</p><p><strong>Aim: </strong>To elucidate the regulatory effects of WD repeat-containing protein 36 (WDR36) on the senescence, migration, and osteogenic differentiation of periodontal ligament SCs (PDLSCs).</p><p><strong>Methods: </strong>The migration and chemotaxis of PDLSCs were detected by the scratch-wound migration test and transwell chemotaxis test. Alkaline phosphatase (ALP) activity, Alizarin red staining, calcium content, and real-time reverse transcription polymerase chain reaction (RT-qPCR) of key transcription factors were used to detect the osteogenic differentiation function of PDLSCs. Cell senescence was determined by senescence-associated β-galactosidase staining.</p><p><strong>Results: </strong>The 24-hour and 48-hour scratch-wound migration test and 48-hour transwell chemotaxis test showed that overexpression of WDR36 inhibited the migration/chemotaxis of PDLSCs. Simultaneously, WDR36 depletion promoted the migration/chemotaxis of PDLSCs. The results of ALP activity, Alizarin red staining, calcium content, and RT-qPCR showed that overexpression of WDR36 inhibited the osteogenic differentiation of PDLSCs, and WDR36 depletion promoted the osteogenic differentiation of PDLSCs. Senescence-associated β-galactosidase staining showed that 0.1 μg/mL icariin (ICA) and overexpression of WDR36 inhibited the senescence of PDLSCs, and WDR36 depletion promoted the osteogenic differentiation of PDLSCs.</p><p><strong>Conclusion: </strong>WDR36 inhibits the migration and chemotaxis, osteogenic differentiation, and senescence of PDLSCs; 0.1 μg/mL ICA inhibits the senescence of PDLSCs. Therefore, WDR36 might serve as a target for periodontal tissue regeneration and the treatment of periodontitis.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"17 2","pages":"99132"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4252/wjsc.v17.i2.99132","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Periodontitis is an inflammatory disease caused by the host's immune response and various interactions between pathogens, which lead to the loss of connective tissue and bone. In recent years, mesenchymal stem cell (SC) transplantation technology has become a research hotspot, which can form periodontal ligament, cementum, and alveolar bone through proliferation and differentiation.
Aim: To elucidate the regulatory effects of WD repeat-containing protein 36 (WDR36) on the senescence, migration, and osteogenic differentiation of periodontal ligament SCs (PDLSCs).
Methods: The migration and chemotaxis of PDLSCs were detected by the scratch-wound migration test and transwell chemotaxis test. Alkaline phosphatase (ALP) activity, Alizarin red staining, calcium content, and real-time reverse transcription polymerase chain reaction (RT-qPCR) of key transcription factors were used to detect the osteogenic differentiation function of PDLSCs. Cell senescence was determined by senescence-associated β-galactosidase staining.
Results: The 24-hour and 48-hour scratch-wound migration test and 48-hour transwell chemotaxis test showed that overexpression of WDR36 inhibited the migration/chemotaxis of PDLSCs. Simultaneously, WDR36 depletion promoted the migration/chemotaxis of PDLSCs. The results of ALP activity, Alizarin red staining, calcium content, and RT-qPCR showed that overexpression of WDR36 inhibited the osteogenic differentiation of PDLSCs, and WDR36 depletion promoted the osteogenic differentiation of PDLSCs. Senescence-associated β-galactosidase staining showed that 0.1 μg/mL icariin (ICA) and overexpression of WDR36 inhibited the senescence of PDLSCs, and WDR36 depletion promoted the osteogenic differentiation of PDLSCs.
Conclusion: WDR36 inhibits the migration and chemotaxis, osteogenic differentiation, and senescence of PDLSCs; 0.1 μg/mL ICA inhibits the senescence of PDLSCs. Therefore, WDR36 might serve as a target for periodontal tissue regeneration and the treatment of periodontitis.
期刊介绍:
The World Journal of Stem Cells (WJSC) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of stem cells. It was launched on December 31, 2009 and is published monthly (12 issues annually) by BPG, the world''s leading professional clinical medical journal publishing company.