Wiley Interdisciplinary Reviews: Water最新文献

筛选
英文 中文
Domestication of water: Management of water resources in the dry zone of Sri Lanka as living cultural heritage 水的驯化:斯里兰卡干旱地区作为活文化遗产的水资源管理
IF 8.2 1区 地球科学
Wiley Interdisciplinary Reviews: Water Pub Date : 2023-02-27 DOI: 10.1002/wat2.1642
Wiebke Bebermeier, N. Abeywardana, Maija Susarina, B. Schütt
{"title":"Domestication of water: Management of water resources in the dry zone of Sri Lanka as living cultural heritage","authors":"Wiebke Bebermeier, N. Abeywardana, Maija Susarina, B. Schütt","doi":"10.1002/wat2.1642","DOIUrl":"https://doi.org/10.1002/wat2.1642","url":null,"abstract":"In the dry zone of Sri Lanka, human‐made reservoirs (locally called tanks or wewas) have served for the collection, storage and distribution of rainfall and runoff and provided irrigation water for the cultivation of paddy for 2400 years. This water management system is deeply inscribed in the rural communities utilizing and maintaining it. Local knowledge connected to the utilization of this system is regarded as a substantial part of the intangible cultural heritage of this unique cultural landscape. In the dry zone of Sri Lanka this system had spread from the fifth century BCE onwards from the hinterland of the ancient capital Anuradhapura throughout the entire dry zone and provides a prerequisite for paddy cultivation. From approximately the 13th century onwards, written sources give evidence, that a weakening of state bureaucracy led to a decline of the water management system. In the Colonial period, numerous reservoirs were restored and the implementation of new governance structures lead to a diminishing of water supplies and conflicts at a local level. In post‐Colonial times, since the 1950s, the system had undergone rapid changes triggered by governmental and economic developments (e.g., land use change, migration). The rich local knowledge, serves in line with a high degree of adaptation to local conditions, as a corner stone for its resilience. A future sustainable management requires the integration of local knowledge in combination with modern techniques in education, planning, and application.","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":"75 1","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72965383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical review of household water treatment in Southeast Asian countries 东南亚国家家庭用水处理的重要回顾
IF 8.2 1区 地球科学
Wiley Interdisciplinary Reviews: Water Pub Date : 2023-02-15 DOI: 10.1002/wat2.1640
Dora Lawrencia, Geetha Maniam, L. Chuah, P. E. Poh
{"title":"Critical review of household water treatment in Southeast Asian countries","authors":"Dora Lawrencia, Geetha Maniam, L. Chuah, P. E. Poh","doi":"10.1002/wat2.1640","DOIUrl":"https://doi.org/10.1002/wat2.1640","url":null,"abstract":"Worldwide, an average gap of 32% was observed between urban and rural populations in terms of access to safe drinking water. Worryingly, 50% of the Southeast Asia population resides in rural areas, making the region highly vulnerable to threats from not having access to safe drinking water. The sparse population density and infrastructural complexities in rural areas have made centralized water treatment systems very challenging in terms of implementation and significantly increased cost. Hence, adopting a household water treatment (HWT) system would be a more suitable co‐existing water provision solution. However, data on the sustainability of HWT in Southeast Asia is still lacking. Therefore, this review aims to provide a critical overview of water poverty and current HWT implemented in Southeast Asian countries. The factors associated with feasibility and potentially sustained implementation of the HWT in Southeast Asian countries covering user preferences, user perception towards water safety, education and training, economic feasibility, collaborations, and supportive policy environment were also discussed. In a nutshell, there is a need for co‐designing the HWT with the targeted community before its implementation for better sustainability.","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":"80 1","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85403781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
People need freshwater biodiversity 人类需要淡水生物多样性
IF 8.2 1区 地球科学
Wiley Interdisciplinary Reviews: Water Pub Date : 2023-02-08 DOI: 10.1002/wat2.1633
A. Lynch, S. Cooke, A. Arthington, C. Baigún, L. Bossenbroek, C. Dickens, I. Harrison, I. Kimirei, S. Langhans, K. Murchie, J. Olden, S. Ormerod, M. Owuor, R. Raghavan, M. Samways, R. Schinegger, Subodh Sharma, R. Tachamo-Shah, D. Tickner, D. Tweddle, N. Young, S. Jähnig
{"title":"People need freshwater biodiversity","authors":"A. Lynch, S. Cooke, A. Arthington, C. Baigún, L. Bossenbroek, C. Dickens, I. Harrison, I. Kimirei, S. Langhans, K. Murchie, J. Olden, S. Ormerod, M. Owuor, R. Raghavan, M. Samways, R. Schinegger, Subodh Sharma, R. Tachamo-Shah, D. Tickner, D. Tweddle, N. Young, S. Jähnig","doi":"10.1002/wat2.1633","DOIUrl":"https://doi.org/10.1002/wat2.1633","url":null,"abstract":"Freshwater biodiversity, from fish to frogs and microbes to macrophytes, provides a vast array of services to people. Mounting concerns focus on the accelerating pace of biodiversity loss and declining ecological function within freshwater ecosystems that continue to threaten these natural benefits. Here, we catalog nine fundamental ecosystem services that the biotic components of indigenous freshwater biodiversity provide to people, organized into three categories: material (food; health and genetic resources; material goods), non‐material (culture; education and science; recreation), and regulating (catchment integrity; climate regulation; water purification and nutrient cycling). If freshwater biodiversity is protected, conserved, and restored in an integrated manner, as well as more broadly appreciated by humanity, it will continue to contribute to human well‐being and our sustainable future via this wide range of services and associated nature‐based solutions to our sustainable future.","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":"6 1","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73409929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Evaporation processes in the Silala River basin 希拉拉河流域的蒸发过程
IF 8.2 1区 地球科学
Wiley Interdisciplinary Reviews: Water Pub Date : 2023-02-07 DOI: 10.1002/wat2.1638
F. Suárez, Tomás Oportus, Magdalena L. Mendoza, I. Aguirre, V. Godoy, J. Muñoz
{"title":"Evaporation processes in the Silala River basin","authors":"F. Suárez, Tomás Oportus, Magdalena L. Mendoza, I. Aguirre, V. Godoy, J. Muñoz","doi":"10.1002/wat2.1638","DOIUrl":"https://doi.org/10.1002/wat2.1638","url":null,"abstract":"","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44730274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Investigating river–aquifer interactions using heat as a tracer in the Silala river transboundary basin 利用热作为示踪剂在西拉拉河跨界流域研究河流与含水层的相互作用
IF 8.2 1区 地球科学
Wiley Interdisciplinary Reviews: Water Pub Date : 2023-02-06 DOI: 10.1002/wat2.1639
F. Suárez, Victoria Sandoval, A. Sarabia, J. Muñoz
{"title":"Investigating river–aquifer interactions using heat as a tracer in the Silala river transboundary basin","authors":"F. Suárez, Victoria Sandoval, A. Sarabia, J. Muñoz","doi":"10.1002/wat2.1639","DOIUrl":"https://doi.org/10.1002/wat2.1639","url":null,"abstract":"","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44324552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Natural flood management: Opportunities to implement nature‐based solutions on privately owned land 自然洪水管理:在私有土地上实施基于自然的解决方案的机会
IF 8.2 1区 地球科学
Wiley Interdisciplinary Reviews: Water Pub Date : 2023-02-01 DOI: 10.1002/wat2.1637
T. Thaler, P. Hudson, C. Viavattene, C. Green
{"title":"Natural flood management: Opportunities to implement nature‐based solutions on privately owned land","authors":"T. Thaler, P. Hudson, C. Viavattene, C. Green","doi":"10.1002/wat2.1637","DOIUrl":"https://doi.org/10.1002/wat2.1637","url":null,"abstract":"The implementation of Natural Flood Management (NFM), as an example of a nature‐based solution (NbS), is promoted as a risk reduction strategy to support sustainable flood risk management and climate change adaptation more widely. Additionally, as an NbS, NFM aims to provide further multiple benefits, such as increased biodiversity and improved water quality as well as improved mental health. The implementation of NbS often needs private‐owned or managed land, yet can create conflicts between the different stakeholders which can undermine the social consensus required for successful implementation. Consequently, a main question is how the multiple benefits and requirements of NFM can be delivered to meet the different goals of the wide variety of stakeholders who must be involved. This article discusses the challenges and potential of implementing NFM as an alternative to the traditional technical mitigation measures in flood risk management. We outline four opportunities in the implementation of NFM: physical conditions of the catchment, social interaction, financial resources, and institutional setting. Their importance is then demonstrated and compared to different examples across the globe. Nevertheless, the core drivers reflect the social interaction and institutional setting and the role of stakeholders in the successful implementation of NFM.","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":"93 1","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81943547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Mitigating floods and attenuating surface runoff with temporary storage areas in headwaters 在源头建立临时蓄水区,减轻洪水和减少地表径流
IF 8.2 1区 地球科学
Wiley Interdisciplinary Reviews: Water Pub Date : 2023-01-24 DOI: 10.1002/wat2.1634
Martyn T. Roberts, J. Geris, P. Hallett, M. Wilkinson
{"title":"Mitigating floods and attenuating surface runoff with temporary storage areas in headwaters","authors":"Martyn T. Roberts, J. Geris, P. Hallett, M. Wilkinson","doi":"10.1002/wat2.1634","DOIUrl":"https://doi.org/10.1002/wat2.1634","url":null,"abstract":"Temporary storage areas (TSAs) represent a category of soft‐engineered nature‐based solutions that can provide dispersed, small‐scale storage throughout a catchment. TSAs store and attenuate surface runoff, providing new additional storage during flood events. The need for such additional catchment storage will become more urgent as the frequency and magnitude of extreme hydrological events increases due to climate change. Implementation of TSAs in headwater catchments is slowly gaining momentum, but practitioners still require further evidence on how such measures function during flood events. This review focuses on the role of relatively small‐scale (<10,000 m3) TSAs in headwater catchments for flood risk management. It also explores the potential wider benefits for implementing these as part of an integrated catchment management approach. TSA flood mitigation effectiveness is primarily determined by the TSA's available storage prior to the event. At the local scale, this can be represented by the relationship between TSA inputs, outputs and total storage. Factors influencing the local functioning and effectiveness of TSAs are discussed, with potential considerations for optimizing future TSA design and management. Hydrological models have suggested that TSAs could be used to effectively attenuate high magnitude events. However, future considerations should involve addressing the lack of empirical evidence showing TSA catchment scale effectiveness and how local TSA functioning might change in time. Small‐scale headwater TSAs offer a holistic and sustainable approach to catchment management that can deliver both local benefits to landowners and wider flood risk mitigation for society.","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":"3 1","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84249289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Correction to Examining water and gender narratives and realities 修正检视水与性别的叙述与现实
IF 8.2 1区 地球科学
Wiley Interdisciplinary Reviews: Water Pub Date : 2023-01-22 DOI: 10.1002/wat2.1636
{"title":"Correction to Examining water and gender narratives and realities","authors":"","doi":"10.1002/wat2.1636","DOIUrl":"https://doi.org/10.1002/wat2.1636","url":null,"abstract":"","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":"36 1","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82511717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart management of combined sewer overflows: From an ancient technology to artificial intelligence 合流溢流智能管理:从古老技术到人工智能
IF 8.2 1区 地球科学
Wiley Interdisciplinary Reviews: Water Pub Date : 2023-01-21 DOI: 10.1002/wat2.1635
M. M. Saddiqi, Wanqing Zhao, Sarah Cotterill, R. Dereli
{"title":"Smart management of combined sewer overflows: From an ancient technology to artificial intelligence","authors":"M. M. Saddiqi, Wanqing Zhao, Sarah Cotterill, R. Dereli","doi":"10.1002/wat2.1635","DOIUrl":"https://doi.org/10.1002/wat2.1635","url":null,"abstract":"Sewer systems are an essential part of sanitation infrastructure for protecting human and ecosystem health. Initially, they were used to solely convey stormwater, but over time municipal sewage was discharged to these conduits and transformed them into combined sewer systems (CSS). Due to climate change and rapid urbanization, these systems are no longer sufficient and overflow in wet weather conditions. Mechanistic and data‐driven models have been frequently used in research on combined sewer overflow (CSO) management integrating low‐impact development and gray‐green infrastructures. Recent advances in measurement, communication, and computation technologies have simplified data collection methods. As a result, technologies such as artificial intelligence (AI), geographic information system, and remote sensing can be integrated into CSO and stormwater management as a part of the smart city and digital twin concepts to build climate‐resilient infrastructures and services. Therefore, smart management of CSS is now both technically and economically feasible to tackle the challenges ahead. This review article explores CSO characteristics and associated impact on receiving waterbodies, evaluates suitable models for CSO management, and presents studies including above‐mentioned technologies in the context of smart CSO and stormwater management. Although integration of all these technologies has a big potential, further research is required to achieve AI‐controlled CSS for robust and agile CSO mitigation.","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":"3 1","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81195192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Streambed migration frequency drives ecology and biogeochemistry across spatial scales 河床迁移频率在空间尺度上驱动生态和生物地球化学
IF 8.2 1区 地球科学
Wiley Interdisciplinary Reviews: Water Pub Date : 2023-01-17 DOI: 10.1002/wat2.1632
Ute Risse‐Buhl, S. Arnon, E. Bar‐Zeev, Anna Oprei, A. Packman, Ignacio Peralta-Maraver, A. Robertson, Y. Teitelbaum, M. Mutz
{"title":"Streambed migration frequency drives ecology and biogeochemistry across spatial scales","authors":"Ute Risse‐Buhl, S. Arnon, E. Bar‐Zeev, Anna Oprei, A. Packman, Ignacio Peralta-Maraver, A. Robertson, Y. Teitelbaum, M. Mutz","doi":"10.1002/wat2.1632","DOIUrl":"https://doi.org/10.1002/wat2.1632","url":null,"abstract":"The bed of fluvial ecosystems plays a major role in global biogeochemical cycles. All fluvial sediments migrate and although responses of aquatic organisms to such movements have been recorded there is no theoretical framework on how the frequency of sediment movement affects streambed ecology and biogeochemistry. We here developed a theoretical framework describing how the moving‐resting frequencies of fine‐grained sediments constrain streambed communities across spatial scales. Specifically, we suggest that the most drastic impact on benthic and hyporheic communities will exist when ecological and biogeochemical processes are at the same temporal scale as the sediment moving‐resting frequency. Moreover, we propose that the simultaneous occurrence of streambed patches differing in morphodynamics should be considered as an important driver of metacommunity dynamics. We surmise that the frequency of patch transition will add new dimensions to the understanding of biogeochemical cycling and metacommunities from micro‐habitat to segment scales. This theoretical framework is important for fluvial ecosystems with frequent sediment movement, yet it could be applied to any other dynamic habitat.","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":"845 2","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72433500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信