Martyn T. Roberts, J. Geris, P. Hallett, M. Wilkinson
{"title":"Mitigating floods and attenuating surface runoff with temporary storage areas in headwaters","authors":"Martyn T. Roberts, J. Geris, P. Hallett, M. Wilkinson","doi":"10.1002/wat2.1634","DOIUrl":null,"url":null,"abstract":"Temporary storage areas (TSAs) represent a category of soft‐engineered nature‐based solutions that can provide dispersed, small‐scale storage throughout a catchment. TSAs store and attenuate surface runoff, providing new additional storage during flood events. The need for such additional catchment storage will become more urgent as the frequency and magnitude of extreme hydrological events increases due to climate change. Implementation of TSAs in headwater catchments is slowly gaining momentum, but practitioners still require further evidence on how such measures function during flood events. This review focuses on the role of relatively small‐scale (<10,000 m3) TSAs in headwater catchments for flood risk management. It also explores the potential wider benefits for implementing these as part of an integrated catchment management approach. TSA flood mitigation effectiveness is primarily determined by the TSA's available storage prior to the event. At the local scale, this can be represented by the relationship between TSA inputs, outputs and total storage. Factors influencing the local functioning and effectiveness of TSAs are discussed, with potential considerations for optimizing future TSA design and management. Hydrological models have suggested that TSAs could be used to effectively attenuate high magnitude events. However, future considerations should involve addressing the lack of empirical evidence showing TSA catchment scale effectiveness and how local TSA functioning might change in time. Small‐scale headwater TSAs offer a holistic and sustainable approach to catchment management that can deliver both local benefits to landowners and wider flood risk mitigation for society.","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":"3 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Water","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/wat2.1634","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Temporary storage areas (TSAs) represent a category of soft‐engineered nature‐based solutions that can provide dispersed, small‐scale storage throughout a catchment. TSAs store and attenuate surface runoff, providing new additional storage during flood events. The need for such additional catchment storage will become more urgent as the frequency and magnitude of extreme hydrological events increases due to climate change. Implementation of TSAs in headwater catchments is slowly gaining momentum, but practitioners still require further evidence on how such measures function during flood events. This review focuses on the role of relatively small‐scale (<10,000 m3) TSAs in headwater catchments for flood risk management. It also explores the potential wider benefits for implementing these as part of an integrated catchment management approach. TSA flood mitigation effectiveness is primarily determined by the TSA's available storage prior to the event. At the local scale, this can be represented by the relationship between TSA inputs, outputs and total storage. Factors influencing the local functioning and effectiveness of TSAs are discussed, with potential considerations for optimizing future TSA design and management. Hydrological models have suggested that TSAs could be used to effectively attenuate high magnitude events. However, future considerations should involve addressing the lack of empirical evidence showing TSA catchment scale effectiveness and how local TSA functioning might change in time. Small‐scale headwater TSAs offer a holistic and sustainable approach to catchment management that can deliver both local benefits to landowners and wider flood risk mitigation for society.
期刊介绍:
The WIREs series is truly unique, blending the best aspects of encyclopedic reference works and review journals into a dynamic online format. These remarkable resources foster a research culture that transcends disciplinary boundaries, all while upholding the utmost scientific and presentation excellence. However, they go beyond traditional publications and are, in essence, ever-evolving databases of the latest cutting-edge reviews.