{"title":"Chiral fiber supramolecular hydrogels for tissue engineering.","authors":"Xueqian Wang, Chuanliang Feng","doi":"10.1002/wnan.1847","DOIUrl":"https://doi.org/10.1002/wnan.1847","url":null,"abstract":"<p><p>Tissue engineering (TE), as a new interdisciplinary discipline, aims to develop biological substitutes for repairing damaged tissues and organs. For the success of tissue regeneration, such biomaterials need to support the physiological activities of cells and allow the growth and maturation of tissues. Naturally, this regulation is achieved through the dynamic remodeling of the extracellular matrix (ECM) of cells. In recent years, chiral supramolecular hydrogels have shown higher application potential in the TE field than traditional polymer hydrogels due to their dynamic noncovalent interactions, adjustable self-assembly structure, and good biocompatibility. These advantages make it possible to construct hydrogels under physiological conditions with structure and function similar to those of the natural ECM. Meanwhile, the chiral characteristics of hydrogels play an important role in regulating cellular activities such as differentiation, adhesion, and proliferation, which is beneficial for tissue formation. In this review, a brief introduction is presented to highlight the importance of chiral fiber supramolecular hydrogels for TE at first. Afterward, the considerations for chiral supramolecular hydrogel design, as well as the influence of external stimuli on chiral hydrogel construction, are discussed. Finally, the potential application prospects of these materials in TE and the significant contribution made by our group in this field are summarized. This review not only helps to reveal the importance of chiral properties in TE but also provides new strategies for TE research based on chiral bionic microenvironments. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Biology-Inspired Nanomaterials > Peptide-Based Structures Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 2","pages":"e1847"},"PeriodicalIF":8.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9694141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High spin Fe(III)-doped nanostructures as T<sub>1</sub> MR imaging probes.","authors":"Mauro Botta, Carlos F G C Geraldes, Lorenzo Tei","doi":"10.1002/wnan.1858","DOIUrl":"https://doi.org/10.1002/wnan.1858","url":null,"abstract":"<p><p>Magnetic Resonance Imaging (MRI) T<sub>1</sub> contrast agents based on Fe(III) as an alternative to Gd-based compounds have been under intense scrutiny in the last 6-8 years and a number of nanostructures have been designed and proposed for in vivo diagnostic and theranostic applications. Excluding the large family of superparamagnetic iron oxides widely used as T<sub>2</sub> -MR imaging agents that will not be covered by this review, a considerable number and type of nanoparticles (NPs) have been employed, ranging from amphiphilic polymer-based NPs, NPs containing polyphenolic binding units such as melanin-like or polycatechols, mixed metals such as Fe/Gd or Fe/Au NPs and perfluorocarbon nanoemulsions. Iron(III) exhibits several favorable magnetic properties, high biocompatibility and improved toxicity profile that place it as the paramagnetic ion of choice for the next generation of nanosized MRI and theranostic contrast agents. An analysis of the examples reported in the last decade will show the opportunities for relaxivity and MR-contrast enhancement optimization that could bring Fe(III)-doped NPs to really compete with Gd(III)-based nanosystems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 2","pages":"e1858"},"PeriodicalIF":8.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9329650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications.","authors":"Joanna Yang, Kathryn M Luly, Jordan J Green","doi":"10.1002/wnan.1853","DOIUrl":"10.1002/wnan.1853","url":null,"abstract":"<p><p>Nonviral nanoparticles have emerged as an attractive alternative to viral vectors for gene therapy applications, utilizing a range of lipid-based, polymeric, and inorganic materials. These materials can either encapsulate or be functionalized to bind nucleic acids and protect them from degradation. To effectively elicit changes to gene expression, the nanoparticle carrier needs to undergo a series of steps intracellularly, from interacting with the cellular membrane to facilitate cellular uptake to endosomal escape and nucleic acid release. Adjusting physiochemical properties of the nanoparticles, such as size, charge, and targeting ligands, can improve cellular uptake and ultimately gene delivery. Applications in the central nervous system (CNS; i.e., neurological diseases, brain cancers) face further extracellular barriers for a gene-carrying nanoparticle to surpass, with the most significant being the blood-brain barrier (BBB). Approaches to overcome these extracellular challenges to deliver nanoparticles into the CNS include systemic, intracerebroventricular, intrathecal, and intranasal administration. This review describes and compares different biomaterials for nonviral nanoparticle-mediated gene therapy to the CNS and explores challenges and recent preclinical and clinical developments in overcoming barriers to nanoparticle-mediated delivery to the brain. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 2","pages":"e1853"},"PeriodicalIF":8.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10023321/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9380080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meghan M Watt, Parikshit Moitra, Zach Sheffield, Fatemeh Ostadhossein, Elizabeth A Maxwell, Dipanjan Pan
{"title":"A narrative review on the role of carbon nanoparticles in oncology.","authors":"Meghan M Watt, Parikshit Moitra, Zach Sheffield, Fatemeh Ostadhossein, Elizabeth A Maxwell, Dipanjan Pan","doi":"10.1002/wnan.1845","DOIUrl":"https://doi.org/10.1002/wnan.1845","url":null,"abstract":"<p><p>The lymphatic system is the first site of metastasis for most tumors and is a common reason for the failure of cancer therapy. The lymphatic system's anatomical properties make it difficult to deliver chemotherapy agents at therapeutic concentrations while avoiding systemic toxicity. Carbon nanoparticles offer a promising alternative for identifying and transporting therapeutic molecules. The larger diameter of lymphatic vessels compared to the diameter of blood vessels, allows carbon nanoparticles to selectively enter the lymphatic system once administered subcutaneously. Carbon nanoparticles stain tumor-draining lymph nodes black following intratumoral injection, making them useful in sentinel lymph node mapping. Drug-loaded carbon nanoparticles allow higher concentrations of chemotherapeutics to accumulate in regional lymph nodes while decreasing plasma drug accumulation. The use of carbon nanoparticles for chemotherapy delivery has been associated with lower mortality, fewer histopathology changes in vital organs, and lower serum concentrations of hepatocellular enzymes. This review will focus on the ability of carbon nanoparticles to target the lymphatics as well as their current and potential applications in sentinel lymph node mapping and oncology treatment regimens. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 2","pages":"e1845"},"PeriodicalIF":8.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9323718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanovaccines to combat virus-related diseases.","authors":"Fuhua Wu, Ming Qin, Hairui Wang, Xun Sun","doi":"10.1002/wnan.1857","DOIUrl":"https://doi.org/10.1002/wnan.1857","url":null,"abstract":"<p><p>The invention and application of vaccines have made tremendous contributions to fight against pandemics for human beings. However, current vaccines still have shortcomings such as insufficient cellular immunity, the lack of cross-protection, and the risk of antibody-dependent enhancement (ADE). Thus, the prevention and control of pandemic viruses including Ebola Virus, human immunodeficiency virus (HIV), Influenza A viruses, Zika, and current SARS-CoV-2 are still extremely challenging. Nanoparticles with unique physical, chemical, and biological properties, hold promising potentials for the development of ideal vaccines against these viral infections. Moreover, the approval of the first nanoparticle-based mRNA vaccine BNT162b has established historic milestones that greatly inspired the clinical translation of nanovaccines. Given the safety and extensive application of subunit vaccines, and the rapid rise of mRNA vaccines, this review mainly focuses on these two vaccine strategies and provides an overview of the nanoparticle-based vaccine delivery platforms to tackle the current and next global health challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 2","pages":"e1857"},"PeriodicalIF":8.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9680007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current development of cabazitaxel drug delivery systems.","authors":"Boyang Sun, Jonathan F Lovell, Yumiao Zhang","doi":"10.1002/wnan.1854","DOIUrl":"https://doi.org/10.1002/wnan.1854","url":null,"abstract":"<p><p>The second-generation taxane cabazitaxel has been clinically approved for the treatment of metastatic castration-resistant prostate cancer after docetaxel failure. Compared with the first-generation taxanes paclitaxel and docetaxel, cabazitaxel has potent anticancer activity and is less prone to drug resistance due to its lower affinity for the P-gp efflux pump. The relatively high hydrophobicity of cabazitaxel and the poor aqueous colloidal stability of the commercial formulation, following its preparation for injection, presents opportunities for new cabazitaxel formulations with improved features. This review provides an overview of cabazitaxel drug formulations and hydrophobic taxane drug delivery systems in general, and particularly focuses on emerging cabazitaxel delivery systems discovered in the past 5 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 2","pages":"e1854"},"PeriodicalIF":8.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9317703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isadora Takako Smith, Elric Zhang, Yagmur Akin Yildirim, Manuel Alberteris Campos, Mostafa Abdel-Mottaleb, Burak Yildirim, Zeinab Ramezani, Victoria Louise Andre, Aidan Scott-Vandeusen, Ping Liang, Sakhrat Khizroev
{"title":"Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles.","authors":"Isadora Takako Smith, Elric Zhang, Yagmur Akin Yildirim, Manuel Alberteris Campos, Mostafa Abdel-Mottaleb, Burak Yildirim, Zeinab Ramezani, Victoria Louise Andre, Aidan Scott-Vandeusen, Ping Liang, Sakhrat Khizroev","doi":"10.1002/wnan.1849","DOIUrl":"https://doi.org/10.1002/wnan.1849","url":null,"abstract":"<p><p>Unlike any other nanoparticles known to date, magnetoelectric nanoparticles (MENPs) can generate relatively strong electric fields locally via the application of magnetic fields and, vice versa, have their magnetization change in response to an electric field from the microenvironment. Hence, MENPs can serve as a wireless two-way interface between man-made devices and physiological systems at the molecular level. With the recent development of room-temperature biocompatible MENPs, a number of novel potential medical applications have emerged. These applications include wireless brain stimulation and mapping/recording of neural activity in real-time, targeted delivery across the blood-brain barrier (BBB), tissue regeneration, high-specificity cancer cures, molecular-level rapid diagnostics, and others. Several independent in vivo studies, using mice and nonhuman primates models, demonstrated the capability to deliver MENPs in the brain across the BBB via intravenous injection or, alternatively, bypassing the BBB via intranasal inhalation of the nanoparticles. Wireless deep brain stimulation with MENPs was demonstrated both in vitro and in vivo in different rodents models by several independent groups. High-specificity cancer treatment methods as well as tissue regeneration approaches with MENPs were proposed and demonstrated in in vitro models. A number of in vitro and in vivo studies were dedicated to understand the underlying mechanisms of MENPs-based high-specificity targeted drug delivery via application of d.c. and a.c. magnetic fields. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 2","pages":"e1849"},"PeriodicalIF":8.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9380071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal delivery of poorly soluble drugs using electrospun nanofiber technology: Challenges, state of the art, and future directions.","authors":"Satyanarayan Pattnaik, Kalpana Swain, Seeram Ramakrishna","doi":"10.1002/wnan.1859","DOIUrl":"https://doi.org/10.1002/wnan.1859","url":null,"abstract":"<p><p>Poor aqueous solubility of both, existing drug molecules and those which are currently in the developmental stage, have posed a great challenge to pharmaceutical scientists because they often exhibit poor dissolution behavior and subsequent poor and erratic bioavailability. This has triggered extensive research to explore nanotechnology-based technology platforms for possible rescue. Recently, nanofibers have been exploited widely for diverse biomedical applications including for drug delivery. Electrospun nanofibers are capable of preserving the homogeneously loaded therapeutic agents in amorphous state potentialy impairing devitrification. The present review aims at providing an overview of the various key factors that affect the electrospinning process and characteristics of the nanofibers while fabrication of drug loaded nanofibers for poorly soluble drug candidates. The review explores various methodological advancements in the electrospinning process and set-ups for production scale-up. The various types of electrospun nanofibers (like simple matrix, core-sheath, Janus, and inclusion complex nanofibers) that have been exploited for the delivery of poorly soluble drugs are also critically assessed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 2","pages":"e1859"},"PeriodicalIF":8.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9380079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana C Mengarda, Bruno Iles, João Paulo F Longo, Josué de Moraes
{"title":"Recent approaches in nanocarrier-based therapies for neglected tropical diseases.","authors":"Ana C Mengarda, Bruno Iles, João Paulo F Longo, Josué de Moraes","doi":"10.1002/wnan.1852","DOIUrl":"https://doi.org/10.1002/wnan.1852","url":null,"abstract":"<p><p>Neglected tropical diseases (NTDs) remain major public health problems in developing countries. Reducing the burden of NTDs requires sustained collaborative drug discovery efforts to achieve the goals of the new NTDs roadmap launched by the World Health Organization. Oral drugs are the most convenient choice and usually the safest and least expensive. However, the oral use of some drugs for NTDs treatment has many drawbacks, including toxicity, adverse reactions, drug resistance, drug low solubility, and bioavailability. Since there is an imperative need for novel and more effective drugs to treat the various NTDs, in recent years, several compound-loaded nanoparticles have been prepared with the objective of evaluating their application as an oral drug delivery system for the treatment of NTDs. This review focuses on the various types of nanoparticle drug delivery systems that have been recently used against the major NTDs caused by parasites such as leishmaniasis, Chagas disease, and schistosomiasis. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 2","pages":"e1852"},"PeriodicalIF":8.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9317706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monica Paesa, Teresa Alejo, Felicito Garcia-Alvarez, Manuel Arruebo, Gracia Mendoza
{"title":"New insights in osteoarthritis diagnosis and treatment: Nano-strategies for an improved disease management.","authors":"Monica Paesa, Teresa Alejo, Felicito Garcia-Alvarez, Manuel Arruebo, Gracia Mendoza","doi":"10.1002/wnan.1844","DOIUrl":"https://doi.org/10.1002/wnan.1844","url":null,"abstract":"Osteoarthritis (OA) is a common chronic joint pathology that has become a predominant cause of disability worldwide. Even though the origin and evolution of OA rely on different factors that are not yet elucidated nor understood, the development of novel strategies to treat OA has emerged in the last years. Cartilage degradation is the main hallmark of the pathology though alterations in bone and synovial inflammation, among other comorbidities, are also involved during OA progression. From a molecular point of view, a vast amount of signaling pathways are implicated in the progression of the disease, opening up a wide plethora of targets to attenuate or even halt OA. The main purpose of this review is to shed light on the recent strategies published based on nanotechnology for the early diagnosis of the disease as well as the most promising nano-enabling therapeutic approaches validated in preclinical models. To address the clinical issue, the key pathways involved in OA initiation and progression are described as the main potential targets for OA prevention and early treatment. Furthermore, an overview of current therapeutic strategies is depicted. Finally, to solve the drawbacks of current treatments, nanobiomedicine has shown demonstrated benefits when using drug delivery systems compared with the administration of the equivalent doses of the free drugs and the potential of disease-modifying OA drugs when using nanosystems. We anticipate that the development of smart and specific bioresponsive and biocompatible nanosystems will provide a solid and promising basis for effective OA early diagnosis and treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 2","pages":"e1844"},"PeriodicalIF":8.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9323713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}