Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology最新文献

筛选
英文 中文
Imaging and monitoring of granzyme B in the immune response. 免疫反应中颗粒酶 B 的成像和监测。
IF 8.6 2区 医学
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2024-01-01 Epub Date: 2023-09-15 DOI: 10.1002/wnan.1928
Xiangxia Li, Guiyuan Chen, Kecheng Wu, Haocheng Zheng, Zuotong Tian, Ze Xu, Weidong Zhao, Jianping Weng, Yuanzeng Min
{"title":"Imaging and monitoring of granzyme B in the immune response.","authors":"Xiangxia Li, Guiyuan Chen, Kecheng Wu, Haocheng Zheng, Zuotong Tian, Ze Xu, Weidong Zhao, Jianping Weng, Yuanzeng Min","doi":"10.1002/wnan.1928","DOIUrl":"10.1002/wnan.1928","url":null,"abstract":"<p><p>Significant progress has been made in tumor immunotherapy that uses the human immune response to kill and remove tumor cells. However, overreactive immune response could lead to various autoimmune diseases and acute rejection. Accurate and specific monitoring of immune responses in these processes could help select appropriate therapies and regimens for the patient and could reduce the risk of side effects. Granzyme B (GzmB) is an ideal biomarker for immune response, and its peptide substrate could be coupled with fluorescent dyes or contrast agents for the synthesis of imaging probes activated by GzmB. These small molecules and nanoprobes based on PET, bioluminescence imaging, or fluorescence imaging have proved to be highly GzmB specific and accuracy. This review summarizes the design of different GzmB-responsive imaging probes and their applications in monitoring of tumor immunotherapy and overreactive immune response. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1928"},"PeriodicalIF":8.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10262189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Passive sweat wearable: A new paradigm in the wearable landscape toward enabling "detect to treat" opportunities. 被动排汗可穿戴设备:可穿戴设备领域的新典范,实现 "检测到治疗 "的机会。
IF 8.6 2区 医学
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2024-01-01 Epub Date: 2023-06-25 DOI: 10.1002/wnan.1912
Cornelia Felicia Greyling, Antra Ganguly, Abha Umesh Sardesai, Nathan Kodjo Mintah Churcher, Kai-Chun Lin, Sriram Muthukumar, Shalini Prasad
{"title":"Passive sweat wearable: A new paradigm in the wearable landscape toward enabling \"detect to treat\" opportunities.","authors":"Cornelia Felicia Greyling, Antra Ganguly, Abha Umesh Sardesai, Nathan Kodjo Mintah Churcher, Kai-Chun Lin, Sriram Muthukumar, Shalini Prasad","doi":"10.1002/wnan.1912","DOIUrl":"10.1002/wnan.1912","url":null,"abstract":"<p><p>Growing interest over recent years in personalized health monitoring coupled with the skyrocketing popularity of wearable smart devices has led to the increased relevance of wearable sweat-based sensors for biomarker detection. From optimizing workouts to risk management of cardiovascular diseases and monitoring prediabetes, the ability of sweat sensors to continuously and noninvasively measure biomarkers in real-time has a wide range of applications. Conventional sweat sensors utilize external stimulation of sweat glands to obtain samples, however; this stimulation influences the expression profile of the biomarkers and reduces the accuracy of the detection method. To address this limitation, our laboratory pioneered the development of the passive sweat sensor subfield, which allowed for our progress in developing a sweat chemistry panel. Passive sweat sensors utilize nanoporous structures to confine and detect biomarkers in ultra-low sweat volumes. The ability of passive sweat sensors to use smaller samples than conventional sensors enable users with sedentary lifestyles who perspire less to benefit from sweat sensor technology not previously afforded to them. Herein, the mechanisms and strategies of current sweat sensors are summarized with an emphasis on the emerging subfield of passive sweat-based diagnostics. Prospects for this technology include discovering new biomarkers expressed in sweat and expanding the list of relevant detectable biomarkers. Moreover, the accuracy of biomarker detection can be enhanced with machine learning using prediction algorithms trained on clinical data. Applying this machine learning in conjunction with multiplex biomarker detection will allow for a more holistic approach to trend predictions. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1912"},"PeriodicalIF":8.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9739544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanotechnology translation in vascular diseases: From design to the bench. 纳米技术在血管疾病中的应用:从设计到试验台。
IF 8.6 2区 医学
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2024-01-01 Epub Date: 2023-08-07 DOI: 10.1002/wnan.1919
Yongwen Zhou, Tong Yue, Yu Ding, Huiling Tan, Jianping Weng, Sihui Luo, Xueying Zheng
{"title":"Nanotechnology translation in vascular diseases: From design to the bench.","authors":"Yongwen Zhou, Tong Yue, Yu Ding, Huiling Tan, Jianping Weng, Sihui Luo, Xueying Zheng","doi":"10.1002/wnan.1919","DOIUrl":"10.1002/wnan.1919","url":null,"abstract":"<p><p>Atherosclerosis is a systemic pathophysiological condition contributing to the development of majority of polyvascular diseases. Nanomedicine is a novel and rapidly developing science. Due to their small size, nanoparticles are freely transported in vasculature, and have been widely employed as tools in analytical imaging techniques. Furthermore, the application of nanoparticles also allows target intervention, such as drug delivery and tissue engineering regenerative methods, in the management of major vascular diseases. Therefore, by summarizing the physical and chemical characteristics of common nanoparticles used in diagnosis and treatment of vascular diseases, we discuss the details of these applications from cellular, molecular, and in vivo perspectives in this review. Furthermore, we also summarize the status and challenges of the application of nanoparticles in clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1919"},"PeriodicalIF":8.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9943932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raman spectroscopy and its plasmon-enhanced counterparts: A toolbox to probe protein dynamics and aggregation. 拉曼光谱及其等离子体增强对应物:探测蛋白质动态和聚集的工具箱。
IF 8.6 2区 医学
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2024-01-01 Epub Date: 2023-07-30 DOI: 10.1002/wnan.1917
Ashish Kumar Dhillon, Arti Sharma, Vikas Yadav, Ruchi Singh, Tripti Ahuja, Sanmitra Barman, Soumik Siddhanta
{"title":"Raman spectroscopy and its plasmon-enhanced counterparts: A toolbox to probe protein dynamics and aggregation.","authors":"Ashish Kumar Dhillon, Arti Sharma, Vikas Yadav, Ruchi Singh, Tripti Ahuja, Sanmitra Barman, Soumik Siddhanta","doi":"10.1002/wnan.1917","DOIUrl":"10.1002/wnan.1917","url":null,"abstract":"<p><p>Protein unfolding and aggregation are often correlated with numerous diseases such as Alzheimer's, Parkinson's, Huntington's, and other debilitating neurological disorders. Such adverse events consist of a plethora of competing mechanisms, particularly interactions that control the stability and cooperativity of the process. However, it remains challenging to probe the molecular mechanism of protein dynamics such as aggregation, and monitor them in real-time under physiological conditions. Recently, Raman spectroscopy and its plasmon-enhanced counterparts, such as surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS), have emerged as sensitive analytical tools that have the potential to perform molecular studies of functional groups and are showing significant promise in probing events related to protein aggregation. We summarize the fundamental working principles of Raman, SERS, and TERS as nondestructive, easy-to-perform, and fast tools for probing protein dynamics and aggregation. Finally, we highlight the utility of these techniques for the analysis of vibrational spectra of aggregation of proteins from various sources such as tissues, pathogens, food, biopharmaceuticals, and lastly, biological fouling to retrieve precise chemical information, which can be potentially translated to practical applications and point-of-care (PoC) devices. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Diagnostic Nanodevices Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1917"},"PeriodicalIF":8.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9897556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments. 转运体作为一种经皮给药系统:皮肤动力学和最新进展。
IF 8.6 2区 医学
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2024-01-01 Epub Date: 2023-08-01 DOI: 10.1002/wnan.1918
Namrata Matharoo, Hana Mohd, Bozena Michniak-Kohn
{"title":"Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.","authors":"Namrata Matharoo, Hana Mohd, Bozena Michniak-Kohn","doi":"10.1002/wnan.1918","DOIUrl":"10.1002/wnan.1918","url":null,"abstract":"<p><p>The development of innovative approaches to deliver medications has been growing now for the last few decades and generates a growing interest in the dermatopharmaceutical field. Transdermal drug delivery in particular, remains an attractive alternative route for many therapeutics. However, due to the limitations posed by the barrier properties of the stratum corneum, the delivery of many pharmaceutical dosage forms remains a challenge. Most successful therapies using the transdermal route have been ones containing smaller lipophilic molecules with molecular weights of a few hundred Daltons. To overcome these limitations of size and lipophilicity of the drugs, transferosomes have emerged as a successful tool for transdermal delivery of a variety of therapeutics including hydrophilic actives, larger molecules, peptides, proteins, and nucleic acids. Transferosomes exhibit a flexible structure and higher surface hydrophilicity which both play a critical role in the transport of drugs and other solutes using hydration gradients as a driving force to deliver the molecules into and across the skin. This results in enhanced overall permeation as well as controlled release of the drug in the skin layers. Additionally, the physical-chemical properties of the transferosomes provide increased stability by preventing degradation of the actives by oxidation, light, and temperature. Here, we present the history of transferosomes from solid lipid nanoparticles and liposomes, their physical-chemical properties, dermal kinetics, and their recent advances as marketed dosage forms. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1918"},"PeriodicalIF":8.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9920540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. 用于癌症治疗的超声波介导纳米级给药系统:多尺度和多物理场计算模型。
IF 8.6 2区 医学
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2024-01-01 Epub Date: 2023-07-20 DOI: 10.1002/wnan.1913
Farshad Moradi Kashkooli, Tyler K Hornsby, Michael C Kolios, Jahangir Jahan Tavakkoli
{"title":"Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling.","authors":"Farshad Moradi Kashkooli, Tyler K Hornsby, Michael C Kolios, Jahangir Jahan Tavakkoli","doi":"10.1002/wnan.1913","DOIUrl":"10.1002/wnan.1913","url":null,"abstract":"<p><p>Computational modeling enables researchers to study and understand various complex biological phenomena in anticancer drug delivery systems (DDSs), especially nano-sized DDSs (NSDDSs). The combination of NSDDSs and therapeutic ultrasound (TUS), that is, focused ultrasound and low-intensity pulsed ultrasound, has made significant progress in recent years, opening many opportunities for cancer treatment. Multiple parameters require tuning and optimization to develop effective DDSs, such as NSDDSs, in which mathematical modeling can prove advantageous. In silico computational modeling of ultrasound-responsive DDS typically involves a complex framework of acoustic interactions, heat transfer, drug release from nanoparticles, fluid flow, mass transport, and pharmacodynamic governing equations. Owing to the rapid development of computational tools, modeling the different phenomena in multi-scale complex problems involved in drug delivery to tumors has become possible. In the present study, we present an in-depth review of recent advances in the mathematical modeling of TUS-mediated DDSs for cancer treatment. A detailed discussion is also provided on applying these computational models to improve the clinical translation for applications in cancer treatment. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1913"},"PeriodicalIF":8.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9846315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Living virus-based nanohybrids for biomedical applications. 用于生物医学应用的基于活病毒的纳米杂化物。
IF 8.6 2区 医学
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2024-01-01 Epub Date: 2023-08-24 DOI: 10.1002/wnan.1923
Lulu Jin, Zhengwei Mao
{"title":"Living virus-based nanohybrids for biomedical applications.","authors":"Lulu Jin, Zhengwei Mao","doi":"10.1002/wnan.1923","DOIUrl":"10.1002/wnan.1923","url":null,"abstract":"<p><p>Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1923"},"PeriodicalIF":8.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10422601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent developments in the use of centrifugal spinning and pressurized gyration for biomedical applications. 离心纺丝和加压回转在生物医学应用中的最新进展。
IF 8.6 2区 医学
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2024-01-01 Epub Date: 2023-08-08 DOI: 10.1002/wnan.1916
Jubair Ahmed, Merve Gultekinoglu, Mohan Edirisinghe
{"title":"Recent developments in the use of centrifugal spinning and pressurized gyration for biomedical applications.","authors":"Jubair Ahmed, Merve Gultekinoglu, Mohan Edirisinghe","doi":"10.1002/wnan.1916","DOIUrl":"10.1002/wnan.1916","url":null,"abstract":"<p><p>Centrifugal spinning is a technology used to generate small diameter fibers and has been extensively studied for its vast applications in biomedical engineering. Centrifugal spinning is known for its rapid production rate and has inspired the creation of other technologies which leverage the high-speed rotation, namely Pressurized Gyration. Pressurized gyration incorporates a unique applied gas pressure which serves to provide additional control over the fiber production process. The resulting fibers are uniquely suitable for a range of healthcare-related applications that are thoroughly discussed in this work, which involve scaffolds for tissue engineering, solid dispersions for drug delivery, antimicrobial meshes for filtration and bandage-like fibrous coverings for wound healing. In this review, the notable recent developments in centrifugal spinning and pressurized gyration are presented and how these technologies are being used to further the range of uses of biomaterials engineering, for example the development of core-sheath fabrication techniques for multi-layered fibers and the combination with electrospinning to produce advanced fiber mats. The enormous potential of these technologies and their future advancements highlights how important they are in the biomedical discipline. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1916"},"PeriodicalIF":8.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9951047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to "Recent advances in non-plasmonic surface-enhanced Raman spectroscopy nanostructures for biomedical applications". 对 "用于生物医学应用的非等离子体表面增强拉曼光谱纳米结构的最新进展 "的更正。
IF 8.6 2区 医学
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2024-01-01 Epub Date: 2023-09-06 DOI: 10.1002/wnan.1926
{"title":"Correction to \"Recent advances in non-plasmonic surface-enhanced Raman spectroscopy nanostructures for biomedical applications\".","authors":"","doi":"10.1002/wnan.1926","DOIUrl":"10.1002/wnan.1926","url":null,"abstract":"","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1926"},"PeriodicalIF":8.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10542289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current landscape of treating different cancers using nanomedicines: Trends and perspectives. 利用纳米药物治疗不同癌症的现状:趋势与前景。
IF 8.6 2区 医学
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2024-01-01 Epub Date: 2023-09-14 DOI: 10.1002/wnan.1927
Carolina Salvador Morales, Piotr Grodzinski
{"title":"Current landscape of treating different cancers using nanomedicines: Trends and perspectives.","authors":"Carolina Salvador Morales, Piotr Grodzinski","doi":"10.1002/wnan.1927","DOIUrl":"10.1002/wnan.1927","url":null,"abstract":"<p><p>The efforts to use novel nanotechnologies in medicine and cancer have been widespread. In order to understand better the focus areas of cancer nanomedicine research to date, we conducted a survey of nanomedicine developmental and clinical research in conjunction with treatment of various cancers. The survey has been performed based on number of publications, rate of citations, entry into clinical trials, and funding rates by the National Cancer Institute. Our survey indicates that breast and brain cancers are the most and one of the least studied by nanotechnology researchers, respectively. Breast cancer nano-therapies seem to also be most likely to achieve clinical translation as the number of publications produced, amount of funding, total citations, and clinical trials (active and completed) are the highest when compared with research in other cancers. Brain cancer, despite its low survival, has capture much less attention of nanomedicine research community as survey indicated, although nanotechnology can offer novel approaches which can address brain cancer challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1927"},"PeriodicalIF":8.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10230019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信