Nanovaccines to combat virus-related diseases.

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Fuhua Wu, Ming Qin, Hairui Wang, Xun Sun
{"title":"Nanovaccines to combat virus-related diseases.","authors":"Fuhua Wu,&nbsp;Ming Qin,&nbsp;Hairui Wang,&nbsp;Xun Sun","doi":"10.1002/wnan.1857","DOIUrl":null,"url":null,"abstract":"<p><p>The invention and application of vaccines have made tremendous contributions to fight against pandemics for human beings. However, current vaccines still have shortcomings such as insufficient cellular immunity, the lack of cross-protection, and the risk of antibody-dependent enhancement (ADE). Thus, the prevention and control of pandemic viruses including Ebola Virus, human immunodeficiency virus (HIV), Influenza A viruses, Zika, and current SARS-CoV-2 are still extremely challenging. Nanoparticles with unique physical, chemical, and biological properties, hold promising potentials for the development of ideal vaccines against these viral infections. Moreover, the approval of the first nanoparticle-based mRNA vaccine BNT162b has established historic milestones that greatly inspired the clinical translation of nanovaccines. Given the safety and extensive application of subunit vaccines, and the rapid rise of mRNA vaccines, this review mainly focuses on these two vaccine strategies and provides an overview of the nanoparticle-based vaccine delivery platforms to tackle the current and next global health challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 2","pages":"e1857"},"PeriodicalIF":6.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1857","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 3

Abstract

The invention and application of vaccines have made tremendous contributions to fight against pandemics for human beings. However, current vaccines still have shortcomings such as insufficient cellular immunity, the lack of cross-protection, and the risk of antibody-dependent enhancement (ADE). Thus, the prevention and control of pandemic viruses including Ebola Virus, human immunodeficiency virus (HIV), Influenza A viruses, Zika, and current SARS-CoV-2 are still extremely challenging. Nanoparticles with unique physical, chemical, and biological properties, hold promising potentials for the development of ideal vaccines against these viral infections. Moreover, the approval of the first nanoparticle-based mRNA vaccine BNT162b has established historic milestones that greatly inspired the clinical translation of nanovaccines. Given the safety and extensive application of subunit vaccines, and the rapid rise of mRNA vaccines, this review mainly focuses on these two vaccine strategies and provides an overview of the nanoparticle-based vaccine delivery platforms to tackle the current and next global health challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.

抗击病毒相关疾病的纳米疫苗。
疫苗的发明和应用为人类防治流行病作出了巨大贡献。然而,目前的疫苗仍然存在缺陷,如细胞免疫不足、缺乏交叉保护和抗体依赖性增强(ADE)的风险。因此,预防和控制包括埃博拉病毒、人类免疫缺陷病毒(HIV)、甲型流感病毒、寨卡病毒和目前的SARS-CoV-2在内的大流行性病毒仍然极具挑战性。纳米粒子具有独特的物理、化学和生物特性,在开发针对这些病毒感染的理想疫苗方面具有很大的潜力。此外,首个基于纳米颗粒的mRNA疫苗BNT162b的批准建立了历史性的里程碑,极大地启发了纳米疫苗的临床翻译。鉴于亚单位疫苗的安全性和广泛应用,以及mRNA疫苗的迅速崛起,本综述主要关注这两种疫苗策略,并概述了基于纳米颗粒的疫苗递送平台,以应对当前和未来的全球卫生挑战。本文分类如下:治疗方法和药物发现>传染病纳米医学治疗方法和药物发现>新兴技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology NANOSCIENCE & NANOTECHNOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
16.60
自引率
2.30%
发文量
93
期刊介绍: Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists. Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信