Water Environment Research最新文献

筛选
英文 中文
Evaluating the spatiotemporal variation of Ba River water quality in the agricultural and urban watershed in the highland of Vietnam. 评估越南高原农业和城市流域灞河水质的时空变化。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-08-01 DOI: 10.1002/wer.11100
Tuan Anh Nguyen, Thi Nhan Nguyen, Van Tri Dao, Britta Schmalz, Le Luu Tran
{"title":"Evaluating the spatiotemporal variation of Ba River water quality in the agricultural and urban watershed in the highland of Vietnam.","authors":"Tuan Anh Nguyen, Thi Nhan Nguyen, Van Tri Dao, Britta Schmalz, Le Luu Tran","doi":"10.1002/wer.11100","DOIUrl":"https://doi.org/10.1002/wer.11100","url":null,"abstract":"<p><p>The Ba River in Vietnam has been facing pollution due to waste generation from agricultural and urban areas. This study focuses on evaluating the spatiotemporal variations in river water quality based on physicochemical characteristics and pesticide parameters for different seasons in 2022-2023. The results indicate that the concentrations of most parameters in the rainy season were higher than those in the early-dry and dry seasons due to the non-point sources in agricultural areas. Notably, the analysis of pesticide residue in both the rainy and dry seasons revealed low levels of chlorpyrifos (ethyl), and deltamethrin was detected in the only rainy season. The results from the hierarchical cluster analysis and water quality index show that the water quality at Ben Mong, An Khe, and Ba River Bridges was classified as moderately to highly polluted. These areas should focus on regular water quality monitoring and appropriate pollution source management. PRACTITIONER POINTS: Agriculture activities strongly affected the water quality of the Highland Ba River of Vietnam. Chlorpyrifos and deltamethrin pesticides (0.0074-0.0218 μg/L) were detected in Ba River. Non-point pollution sources significantly influenced water quality in the Ba River. Variations in river water quality mainly depend on seasons and locations. Water quality index values in rainy seasons (26-88) are lower than that in dry season (37-92).</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 8","pages":"e11100"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pretreatment for potable reuse: Enhancing the biological removal of 1,4-dioxane from landfill leachate through cometabolism with tetrahydrofuran. 饮用水再利用的预处理:通过与四氢呋喃的彗星代谢作用,提高垃圾填埋场渗滤液中 1,4-dioxane 的生物去除率。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-08-01 DOI: 10.1002/wer.11108
Hannah Stohr, Rohan Menon, Micaela Griffin, James Sabo, Mike Martin, Brian Brazil, Charles Bott
{"title":"Pretreatment for potable reuse: Enhancing the biological removal of 1,4-dioxane from landfill leachate through cometabolism with tetrahydrofuran.","authors":"Hannah Stohr, Rohan Menon, Micaela Griffin, James Sabo, Mike Martin, Brian Brazil, Charles Bott","doi":"10.1002/wer.11108","DOIUrl":"https://doi.org/10.1002/wer.11108","url":null,"abstract":"<p><p>1,4-Dioxane is a probable human carcinogen and a persistent aquatic contaminant. Cometabolic biodegradation of 1,4-dioxane is a promising low-cost and effective treatment technology; however, further demonstration is needed for treating landfill leachate. This technology was tested in two full-scale moving bed biofilm reactors (MBBRs) treating raw landfill leachate with tetrahydrofuran selected as the cometabolite. The raw leachate contained on average 82 μg/L of 1,4-dioxane and before testing the MBBRs removed an average of 38% and 42% of 1,4-dioxane, respectively. First, tetrahydrofuran was added to MBBR 1, and 1,4-dioxane removal was improved to an average of 73%, with the control MBBR removing an average of 37% of 1,4-dioxane. During this period, an optimal dose of 2 mg/L of tetrahydrofuran was identified. Tetrahydrofuran was then fed to both MBBRs, where the 1,4-dioxane removal was on average 73% and 80%. Cometabolic treatment at the landfill significantly reduced the concentration of 1,4-dioxane received from the landfill at a downstream wastewater treatment and indirect potable reuse facility, reducing the load of 1,4-dioxane from 44% to 24% after the study. PRACTITIONER POINTS: Cometabolic degradation of leachate 1,4-dioxane with THF in MBBRs is a feasible treatment technology and a low-cost technique when retrofitting existing biological treatment facilities. The MBBRs can be operated at a range of temperatures, require no operational changes beyond THF addition, and operate best at a mass ratio of THF to 1,4-dioxane of 24. Source control of 1,4-dioxane significantly reduces the concentration of 1,4-dioxane in downstream wastewater treatment plants and potable reuse facilities.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 8","pages":"e11108"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial communities and denitrification mechanisms of pyrite autotrophic denitrification coupled with three-dimensional biofilm electrode reactor. 黄铁矿自养反硝化与三维生物膜电极反应器耦合的微生物群落和反硝化机制。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-08-01 DOI: 10.1002/wer.11107
Shenyu Tan, Yu Huang, Heng Yang, Shiyang Zhang, Xinhua Tang
{"title":"Microbial communities and denitrification mechanisms of pyrite autotrophic denitrification coupled with three-dimensional biofilm electrode reactor.","authors":"Shenyu Tan, Yu Huang, Heng Yang, Shiyang Zhang, Xinhua Tang","doi":"10.1002/wer.11107","DOIUrl":"https://doi.org/10.1002/wer.11107","url":null,"abstract":"<p><p>Denitrification is of great significance for low C/N wastewater treatment. In this study, pyrite autotrophic denitrification (PAD) was coupled with a three-dimensional biofilm electrode reactor (BER) to enhance denitrification. The effect of current on denitrification was extensively studied. The nitrate removal of the PAD-BER increased by 14.90% and 74.64% compared to the BER and the PAD, respectively. In addition, the electron utilization, extracellular polymeric substances secretion, and denitrification enzyme activity (NaR and NiR) were enhanced in the PAD-BER. The microbial communities study displayed that Dokdonella, Hydrogenophaga, Nitrospira, and Terrimonas became the main genera for denitrification. Compared with the PAD and the BER, the abundance of the key denitrification genes narG, nirK, nirS, and nosZ were all boosted in the PAD-BER. This study indicated that the enhanced autotrophic denitrifiers and denitrification genes were responsible for the improved denitrification in the PAD-BER. PRACTITIONER POINTS: PAD-BER displayed higher nitrate removal, EPS, NAR, and NIR activity. The three types of denitrification (HD, HAD, and PAD) and their contribution percentage in the PAD-BER were analyzed. HAD was dominant among the three denitrification processes in PAD-BER. Microbial community composition and key denitrification genes were tested to reveal the denitrification mechanisms.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 8","pages":"e11107"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecotoxicological assessment, in freshwater environment, of wastewater sludge coupled and uncoupled with micro-polyvinyl chloride on algae and water fleas. 在淡水环境中,与微聚氯乙烯耦合和未耦合的废水污泥对藻类和水蚤的生态毒理学评估。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-08-01 DOI: 10.1002/wer.11089
Sara Pignattelli, Francesca Provenza, Darian Rampih, Alfonso Crisci, Monia Renzi
{"title":"Ecotoxicological assessment, in freshwater environment, of wastewater sludge coupled and uncoupled with micro-polyvinyl chloride on algae and water fleas.","authors":"Sara Pignattelli, Francesca Provenza, Darian Rampih, Alfonso Crisci, Monia Renzi","doi":"10.1002/wer.11089","DOIUrl":"https://doi.org/10.1002/wer.11089","url":null,"abstract":"<p><p>In the frame of bioeconomy and circular economy, wastewater sludge (WS) could be a good candidate for its use in agriculture as fertilizer, due to its high content of organic matter, N and P, but on the other hand, it is full of toxicants such as heavy metal, microplastics, detergent, antibiotics, and so on that can reach groundwater and water bodies in leachate form. In this study, we have investigated different sludge concentrations in the eluate form, combined and not with PVC on two different freshwater organisms Selenastrum capricornutum and Daphnia magna, using ecotoxicity tests. At the endpoint, we have evaluated inhibition growth rate, oxidative stress, and pigments production for S. capricornutum, while in case of D. magna, we have assessed organism immobilization and development. From our results, it emerged that at the higher WS concentration, there was not inhibition growth rate, while at oxidative stress, it was higher in algae treated with WS and PVC. Higher Chl-a production was shown for algae treated with 0.3 g/L of sludge coupled with PVC, where higher phaeopigments production were recorded for algae treated with 0.3 g/L of WS. D. magna has shown an opposite trend when compared with algae, where at the highest WS concentrations supplied was corresponding to an increased mortality explaned as the highest immobility percentage. PRACTITIONER POINTS: Wastewater sludge is used in agriculture as fertilizer. PVC microplastic presence and associate ecotoxicity was tested. PVC presence increased oxidative stress in S. capricornutum. D. magna was significantly affected by sludge concentrations supplied.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 8","pages":"e11089"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of water quality index and river classification in Kereh River, Penang, Malaysia: Impact of untreated swine wastewater from Kampung Selamat pig farms. 马来西亚槟城凯雷河水质指数和河流分类比较分析Kampung Selamat 养猪场未经处理的猪废水的影响。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-08-01 DOI: 10.1002/wer.11095
Maisarah Nasution Waras, Muhammad Azrul Zabidi, Zikrullah Ismail, Mageswari Sangaralingam, Amirah Mohd Gazzali, Mohammad Syamsul Reza Harun, Mohd Yusmaidie Aziz, Rafeezul Mohamed, Mohd Nadzri Mohd Najib
{"title":"Comparative analysis of water quality index and river classification in Kereh River, Penang, Malaysia: Impact of untreated swine wastewater from Kampung Selamat pig farms.","authors":"Maisarah Nasution Waras, Muhammad Azrul Zabidi, Zikrullah Ismail, Mageswari Sangaralingam, Amirah Mohd Gazzali, Mohammad Syamsul Reza Harun, Mohd Yusmaidie Aziz, Rafeezul Mohamed, Mohd Nadzri Mohd Najib","doi":"10.1002/wer.11095","DOIUrl":"https://doi.org/10.1002/wer.11095","url":null,"abstract":"<p><p>The Kereh River in Penang, Malaysia, has faced severe pollution for over 40 years due to untreated wastewater from swine farms in Kampung Selamat, discharged via stormwater drains. Despite official claims that all 77 swine farms treat their wastewater to meet regulatory standards, local non-governmental organizations and villagers have challenged this, though their concerns lack scientific backing. This study evaluates the river's water quality by analyzing samples from upstream (US), midstream (MS), and downstream (DS), and from Parit Cina-Parit Besar, a conduit for untreated swine wastewater. Fourteen parameters were measured against Malaysia's National Water Quality Standards (NWQS). Significant differences were found in six parameters: ammonium nitrogen (AN), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), total suspended solids (TSS), and oil and grease (OG). While Dunn's post hoc pairwise comparison showed no significant differences among river segments, mean values indicated increased pollution downstream, particularly after the convergence with untreated swine wastewater. River classification worsened, with water quality index dropping from 69.88 ± 11.37 score (Class III) US to 38.49 ± 12.74 and 50.44 ± 3.14 scores (Class IV) MS and downstream, respectively. A significant positive correlation between E. coli and AN (r = 0.71, p < 0.01) suggests a common point source pollutant, particularly the untreated swine wastewater. The river exhibits low oxygen levels and high organic matter and nutrient concentrations, especially MS and downstream, highlighting substantial ecological and public health risks. Effective enforcement of waste treatment regulations and enhanced monitoring are crucial for mitigating pollution and restoring the river's ecosystem. Collaboration between authorities and pig farmers is essential to improve water quality and maintain the river's ecological balance. PRACTITIONER POINTS: Severe Kereh River pollution: Untreated swine wastewater from Kampung Selamat pig farms, primarily via Parit Cina-Parit Besar, has degraded the river for over 40 years. Regulatory non-compliance: Despite official claims, untreated swine wastewater continues to pollute the river, challenging regulatory standards. Significant pollution indicators: Elevated levels of AN, BOD, COD, DO, TSS, OG, and E. coli signal severe pollution midstream and downstream. Water quality index drop: WQI scores classify midstream and downstream sections as polluted, indicating worsening conditions downstream. Urgent need for action: Enforcing regulations, improving wastewater treatment, and relocating pig farms are crucial for restoring the Kereh River.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 8","pages":"e11095"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fate and transport of chlorine dioxide: Modeling chlorine dioxide in water distribution systems. 二氧化氯的消亡和迁移:配水系统中二氧化氯的模拟。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-08-01 DOI: 10.1002/wer.11094
I Ethem Karadirek, Asli Nur Rizvanoglu, Batuhan Okumus, Ozlem Cansu-Aldemir, Tugba Akdeniz
{"title":"Fate and transport of chlorine dioxide: Modeling chlorine dioxide in water distribution systems.","authors":"I Ethem Karadirek, Asli Nur Rizvanoglu, Batuhan Okumus, Ozlem Cansu-Aldemir, Tugba Akdeniz","doi":"10.1002/wer.11094","DOIUrl":"https://doi.org/10.1002/wer.11094","url":null,"abstract":"<p><p>This study aims to conduct a comprehensive analysis of switching disinfectants from sodium hypochlorite bleach to chlorine dioxide (ClO<sub>2</sub>) in the water distribution system of Geyikbayiri, Antalya. For this purpose, bulk decay rates of ClO<sub>2</sub> at various water temperatures were determined in laboratory studies. The study revealed ClO<sub>2</sub> bulk decay rates of 0.12639 day<sup>-1</sup>, 0.17848 day<sup>-1</sup>, and 0.19621 day<sup>-1</sup> at temperatures 15°C, 20°C, and 30°C, respectively. The EPANET, a widely employed computer program for simulating the extended-period behavior of hydraulic and water quality in pressurized pipes, was utilized for the analysis of the fate and transport of ClO<sub>2</sub>. A hydraulic model was first developed, calibrated, and verified using distinct data sets. The Hazen-Williams friction coefficient of the PSA was determined to be 120 by the trial-and-error method with a mean absolute error (MAE) of 0.408 m. A ClO<sub>2</sub> model was then integrated with the calibrated and verified hydraulic model, revealing a wall decay rate of 0.01 m/day and an average MAE of 0.034 mg/l. After calibration and verification of the ClO<sub>2</sub> model, several management scenarios were developed, and ClO<sub>2</sub> dosing rates were determined. The study showed that ClO<sub>2</sub> dosing rates of 0.40 mg/l and 0.45 mg/l should be applied to keep ClO<sub>2</sub> concentrations within certain limits. PRACTITIONER POINTS: Disinfectants must maintain a sufficient residual in water distribution systems. Chlorine dioxide requires less contact time and is not affected by pH fluctuations. Modeling serves as a decision-making tool for the management of disinfectants. Bulk and wall decay rates of chlorine dioxide are crucial for management strategies. Chlorine dioxide is a good alternative as a disinfectant in such systems.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 8","pages":"e11094"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating vision-based AI and large language models for real-time water pollution surveillance. 整合基于视觉的人工智能和大型语言模型,实现水污染实时监控。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-08-01 DOI: 10.1002/wer.11092
Dinesh Jackson Samuel, Yusuf Sermet, David Cwiertny, Ibrahim Demir
{"title":"Integrating vision-based AI and large language models for real-time water pollution surveillance.","authors":"Dinesh Jackson Samuel, Yusuf Sermet, David Cwiertny, Ibrahim Demir","doi":"10.1002/wer.11092","DOIUrl":"10.1002/wer.11092","url":null,"abstract":"<p><p>Water pollution has become a major concern in recent years, affecting over 2 billion people worldwide, according to UNESCO. This pollution can occur by either naturally, such as algal blooms, or man-made when toxic substances are released into water bodies like lakes, rivers, springs, and oceans. To address this issue and monitor surface-level water pollution in local water bodies, an informative real-time vision-based surveillance system has been developed in conjunction with large language models (LLMs). This system has an integrated camera connected to a Raspberry Pi for processing input frames and is further linked to LLMs for generating contextual information regarding the type, causes, and impact of pollutants on both human health and the environment. This multi-model setup enables local authorities to monitor water pollution and take necessary steps to mitigate it. To train the vision model, seven major types of pollutants found in water bodies like algal bloom, synthetic foams, dead fishes, oil spills, wooden logs, industrial waste run-offs, and trashes were used for achieving accurate detection. ChatGPT API has been integrated with the model to generate contextual information about pollution detected. Thus, the multi-model system can conduct surveillance over water bodies and autonomously alert local authorities to take immediate action, eliminating the need for human intervention. PRACTITIONER POINTS: Combines cameras and LLMs with Raspberry Pi for processing and generating pollutant information. Uses YOLOv5 to detect algal blooms, synthetic foams, dead fish, oil spills, and industrial waste. Supports various modules and environments, including drones and mobile apps for broad monitoring. Educates on environmental healthand alerts authorities about water pollution.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 8","pages":"e11092"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate prediction and intelligent control of COD and other parameters removal from pharmaceutical wastewater using electrocoagulation coupled with catalytic ozonation process. 利用电凝耦合催化臭氧工艺去除制药废水中 COD 和其他参数的精确预测和智能控制。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-08-01 DOI: 10.1002/wer.11099
Yujie Li, Chen Li, Yunhan Jia, Zhenbei Wang, Yatao Liu, Zitan Zhang, Xingyu DuanChen, Amir Ikhlaq, Jolanta Kumirska, Ewa Maria Siedlecka, Oksana Ismailova, Fei Qi
{"title":"Accurate prediction and intelligent control of COD and other parameters removal from pharmaceutical wastewater using electrocoagulation coupled with catalytic ozonation process.","authors":"Yujie Li, Chen Li, Yunhan Jia, Zhenbei Wang, Yatao Liu, Zitan Zhang, Xingyu DuanChen, Amir Ikhlaq, Jolanta Kumirska, Ewa Maria Siedlecka, Oksana Ismailova, Fei Qi","doi":"10.1002/wer.11099","DOIUrl":"https://doi.org/10.1002/wer.11099","url":null,"abstract":"<p><p>In this study, we employed the response surface method (RSM) and the long short-term memory (LSTM) model to optimize operational parameters and predict chemical oxygen demand (COD) removal in the electrocoagulation-catalytic ozonation process (ECOP) for pharmaceutical wastewater treatment. Through RSM simulation, we quantified the effects of reaction time, ozone dose, current density, and catalyst packed rate on COD removal. Then, the optimal conditions for achieving a COD removal efficiency exceeding 50% were identified. After evaluating ECOP performance under optimized conditions, LSTM predicted COD removal (56.4%), close to real results (54.6%) with a 0.2% error. LSTM outperformed RSM in predictive capacity for COD removal. In response to the initial COD concentration and effluent discharge standards, intelligent adjustment of operating parameters becomes feasible, facilitating precise control of the ECOP performance based on this LSTM model. This intelligent control strategy holds promise for enhancing the efficiency of ECOP in real pharmaceutical wastewater treatment scenarios. PRACTITIONER POINTS: This study utilized the response surface method (RSM) and the long short-term memory (LSTM) model for pharmaceutical wastewater treatment optimization. LSTM predicted COD removal (56.4%) closely matched experimental results (54.6%), with a minimal error of 0.2%. LSTM demonstrated superior predictive capacity, enabling intelligent parameter adjustments for enhanced process control. Intelligent control strategy based on LSTM holds promise for improving electrocoagulation-catalytic ozonation process efficiency in pharmaceutical wastewater treatment.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 8","pages":"e11099"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The seasonal variation and ecological risk of microplastics in the Lower Ganges River, Bangladesh. 孟加拉国恒河下游微塑料的季节变化和生态风险。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-08-01 DOI: 10.1002/wer.11103
Md Anamul Hassan, Mabia Hossain Shetu, Osman Miah, Fahmida Parvin, Mashura Shammi, Shafi M Tareq
{"title":"The seasonal variation and ecological risk of microplastics in the Lower Ganges River, Bangladesh.","authors":"Md Anamul Hassan, Mabia Hossain Shetu, Osman Miah, Fahmida Parvin, Mashura Shammi, Shafi M Tareq","doi":"10.1002/wer.11103","DOIUrl":"https://doi.org/10.1002/wer.11103","url":null,"abstract":"<p><p>Microplastic (MP) pollution has gained considerable attention in various ecosystems; however, it has received relatively less attention in freshwater-riverine environments than in other ecosystems. The Ganges River Delta, one of the world's most densely populated areas, is a potential source of MP pollution in the freshwater ecosystem. MPs were identified throughout the year in the lower Ganges River water. Seasonally, the highest abundance was observed during the monsoon (14.66 ± 2.06 MPs/L), followed by the pre-monsoon (13.46 ± 1.75 MPs/L) and post-monsoon (11.50 ± 0.40 MPs/L). Throughout the year, MP discharge was estimated at 4.12 × 10<sup>12</sup> to 2.17 × 10<sup>13</sup> MPs/year. Fourier transformed infrared spectroscopy identified plastic polymers in the water, like ethylene vinyl acetate, polystyrene, polypropylene, polyethylene, and nylon. Moderate contamination by MPs was assessed throughout the year. Significant correlations between MP abundance and both rainfall and discharge were observed. It is essential to implement preventative measures in the Ganges River Basin to mitigate MP pollution before the situation worsens. PRACTITIONER POINTS: Throughout the year, MP concentration ranged from 10.67 to 20.33 MPs/L The highest MP occurrence was observed in the monsoon season (14.66 ± 2.06 MPs/L) The lowest abundance was detected in the post-monsoon period (11.50 ± 0.40 MPs/L) There was a moderate level of MP contamination in the lower Ganges River water It was shown that discharge and rainfall were correlated with MP abundance.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 8","pages":"e11103"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromium (VI) removal by magnetite nanoparticles immobilized with extracellular polymeric substances extracted from Lysinibacillus sp. WH. 用从溶血芽孢杆菌提取的胞外聚合物物质固定的磁铁矿纳米颗粒去除铬(Ⅵ) WH.
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-08-01 DOI: 10.1002/wer.11102
Phoomipat Jungcharoen, Phawida Mekhin, Jiratchaya Seelaphat, Prasit Thongbai, Jindarat Ekprasert
{"title":"Chromium (VI) removal by magnetite nanoparticles immobilized with extracellular polymeric substances extracted from Lysinibacillus sp. WH.","authors":"Phoomipat Jungcharoen, Phawida Mekhin, Jiratchaya Seelaphat, Prasit Thongbai, Jindarat Ekprasert","doi":"10.1002/wer.11102","DOIUrl":"https://doi.org/10.1002/wer.11102","url":null,"abstract":"<p><p>Magnetite nanoparticles (nano-Fe<sub>3</sub>O<sub>4</sub>) and nano-Fe<sub>3</sub>O<sub>4</sub> immobilized with bacterial extracellular polymeric substances (EPSs) extracted from Lysinibacillus sp. WH (Fe<sub>3</sub>O<sub>4</sub>/bact) were comparatively studied for the removal of Cr (VI) ions from aqueous solution in batch study. The objectives were to explore the removal of Cr (VI) efficiency by nano-Fe<sub>3</sub>O<sub>4</sub> and Fe<sub>3</sub>O<sub>4</sub>/bact under varying bacterial concentrations at a range of acidic pH. Results indicated that 150 ppm Cr (VI) could be effectively removed by 5 g/L of nano-Fe<sub>3</sub>O<sub>4</sub> at pH 4, with the efficiency of 89.2 ± 12%. The equilibrium time, determined by a pseudo-second-order model (R<sup>2</sup> = 0.9983), was after 5 h, indicating chemical adsorption. The Cr (VI) removal by the nano-Fe<sub>3</sub>O<sub>4</sub> immobilized with bacterial EPS was effective and steady under a wide range of acidic conditions although bacterial EPS has an alkaline nature. Here, we are the first to demonstrate that Cr (VI) removal efficiency by different concentrations of EPS was not significantly different, suggesting EPS concentration is possibly not the most crucial factor to be optimized for Cr (VI) removal in the future. This study shows the potential application of nano-Fe<sub>3</sub>O<sub>4</sub> immobilized with bacterial EPS for wastewater treatment. PRACTITIONER POINTS: The equilibrium time for magnetite nanoparticles to remove Cr (VI) is 5 h, suggesting chemical adsorption. The Cr (VI) removal efficiency of either magnetite nanoparticles or bacterial EPS is stable under a wide range of acidic conditions. Magnetite nanoparticles immobilized with bacterial EPS extracted from Lysinibacillus sp. WH has a potential application for Cr (VI) removal in wastewater.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 8","pages":"e11102"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信