VacuumPub Date : 2024-10-21DOI: 10.1016/j.vacuum.2024.113759
Tianshi Hu, Benfu Wang, Xiubo Tian, Chunzhi Gong
{"title":"Ultrafast deposition of ultrahard Cr films in tubes by bipolar-HiPIMS with small target-substrate distance","authors":"Tianshi Hu, Benfu Wang, Xiubo Tian, Chunzhi Gong","doi":"10.1016/j.vacuum.2024.113759","DOIUrl":"10.1016/j.vacuum.2024.113759","url":null,"abstract":"<div><div>The PVD deposition of films with excellent surface properties has been a persistent area of research. In this paper, bipolar high power impulse magnetron sputtering with small target-substrate distance is proposed, and ultra-hard Cr films have been deposited with a higher rate in tubes. The microstructure and mechanical properties of the films were characterized using X-ray diffraction, scanning electron microscopy, nanoindentation and scratch test, and compared with films prepared under conventional conditions. With target-substrate distance of 7.5 mm, the ultrafine columnar structure is fabricated due to intensive glow discharge and direct particle-bombardment in high-density plasma. The small grain size of 7.4 ± 0.3 nm is observed although deposition rate as high as 10 μm/hr. The nanohardness of the films reaches 19.94 ± 1.14 GPa, much higher than that reported in the literatures. Meanwhile, the adhesion between film and substrate may be as high as 77 ± 5 N.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113759"},"PeriodicalIF":3.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
VacuumPub Date : 2024-10-21DOI: 10.1016/j.vacuum.2024.113760
Feng Chen , Lanqing Mo , Fei Hu , Wangyun Li , Song Wei
{"title":"Synergistic effect of thermomigration and electric current stressing on damping capacity of Sn58Bi solder","authors":"Feng Chen , Lanqing Mo , Fei Hu , Wangyun Li , Song Wei","doi":"10.1016/j.vacuum.2024.113760","DOIUrl":"10.1016/j.vacuum.2024.113760","url":null,"abstract":"<div><div>In order to evaluate the vibration resistance of Sn58Bi solder in serving electronic devices, the damping capacities of Sn58Bi solders after thermomigration (TM) test at a temperature gradient of 2000 °C/cm for different time (0, 120, 360, 720, and 1440 h) were characterized under electric current stressing (0, 4.0, and 8.0 A). The results indicate that the phase segregation of TM-tested Sn58Bi solders determines the damping performance of solders. The Bi-rich layer thickens with prolonged TM time and migrates in the direction from high temperature to low temperature. Both the critical strains (the values of dislocation getting rid of pining points) of strain-amplitude-related damping capacity curves increases with prolonged TM time, while decreases with increasing electric current. Moreover, both strain-amplitude-related and temperature-related damping capacity shows a general decreasing trend with prolonged TM time, while increases exponentially with increasing electric current. In addition, the damping mechanism changes from dislocation motion to phase boundary sliding with increasing temperature, and the transition temperature decreases with increasing current but generally increases with TM time.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113760"},"PeriodicalIF":3.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
VacuumPub Date : 2024-10-20DOI: 10.1016/j.vacuum.2024.113757
Penghui Lei , Ni Jiang , Jiannan Hao , Qing Peng , Pan Qi , Fangjie Shi , Yuhua Hang , Qianwu Li , Chao Ye
{"title":"Effect of hydrogen ion irradiation on the mechanical properties of thermally aged Z3CN20.09M duplex stainless steel","authors":"Penghui Lei , Ni Jiang , Jiannan Hao , Qing Peng , Pan Qi , Fangjie Shi , Yuhua Hang , Qianwu Li , Chao Ye","doi":"10.1016/j.vacuum.2024.113757","DOIUrl":"10.1016/j.vacuum.2024.113757","url":null,"abstract":"<div><div>In order to investigate the synergistic effect of thermal aging and hydrogen, Z3CN20.09M duplex stainless steels (DSS) were thermal aged at 400 °C and then the irradiated by hydrogen ions. Due to the segregation of the Fe and Cr elements induced by spinodal decomposition, the nanohardness of the ferrite phase increased after thermal aging process. The irradiation effects by hydrogen ion could further increase the nanohardness of the damage region. But the {011}<111> slip system structures formed by the irradiation significantly suppressed the hardening effects of the ions irradiation induced dislocations and spinodal decomposition induced element segregation. During the in-situ transmission electron microscopy (TEM) tensile process, severe deformation occurred and extended along a slip band that ran diagonally across the entire sample region. At last, a cracking formed at the deformation center area and propagated along the crack tip towards the irradiation damage side, ultimately leading to the sample fracture. This study serves as a valuable reference for improving the properties of Z3CN20.09M DSS utilized in nuclear plants.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113757"},"PeriodicalIF":3.8,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
VacuumPub Date : 2024-10-19DOI: 10.1016/j.vacuum.2024.113756
Guoxu Zheng , Xinzhe Huang , Minqiang Xu , Liwei Mao , Qian Zhang , Zhuo Yuan , Zhiwei Liu , Mingxin Song
{"title":"Study of internal electric field and interface bonding engineered heterojunction for high stability lithium-ion battery anode","authors":"Guoxu Zheng , Xinzhe Huang , Minqiang Xu , Liwei Mao , Qian Zhang , Zhuo Yuan , Zhiwei Liu , Mingxin Song","doi":"10.1016/j.vacuum.2024.113756","DOIUrl":"10.1016/j.vacuum.2024.113756","url":null,"abstract":"<div><div>In this paper, SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub> heterojunctions were grown on NF by a simple secondary hydrothermal method. DFT-based calculations show that the SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub> heterojunction has excellent thermal stability with a low band gap (1.7 eV) and Li<sup>+</sup> diffusion barrier (0.822 eV), which is attributed to the generation of an internal electric field that promotes carrier transport. Electrochemical tests showed that the initial capacity of SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub>/NF was 1401 mAh g<sup>−1</sup>, and its capacity was 970 mAh g<sup>−1</sup> after 200 charge/discharge cycles, which is attributed to metal-oxygen bonds at the interface and a special microsphere structure to improve the stability of the materials. In addition, the electrochemical behavior of SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub>/NF is dominated by capacitive behavior, resulting in excellent rate performance. The synthesis of SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub>/NF provides a reference for designing other heterojunctions anode materials.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113756"},"PeriodicalIF":3.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
VacuumPub Date : 2024-10-19DOI: 10.1016/j.vacuum.2024.113755
Hassan Javed, Kees Kolmeijer, Nick Klein, Jamie A. Trindell, Gregory Schneider, Rik V. Mom
{"title":"A laboratory-based electrochemical NAP-XPS system for operando electrocatalysis studies","authors":"Hassan Javed, Kees Kolmeijer, Nick Klein, Jamie A. Trindell, Gregory Schneider, Rik V. Mom","doi":"10.1016/j.vacuum.2024.113755","DOIUrl":"10.1016/j.vacuum.2024.113755","url":null,"abstract":"<div><div>During electrocatalytic reactions, the electrode, adsorbates, electrolyte ions, and solvent molecules at the electrode-electrolyte interface each play an important role. Electrochemical X-ray photoelectron spectroscopy (XPS) holds great promise for deciphering these roles, providing the oxidation state or bonding environment of every element present at the interface. However, combining the vacuum required for XPS with the wet environment needed for electrochemistry constitutes a technical challenge, requiring purpose-built instrumentation and spectro-electrochemical cell design. Here, we present a laboratory-based electrochemical XPS instrument optimized for <em>operando</em> studies on nano-structured electrocatalysts. The core of the system is a 3D printed spectro-electrochemical cell containing a membrane-electrode-graphene assembly. We show that this design enables us to probe the electrode surface, interfacial water, and interfacial ions under well-defined potential control. Meanwhile, the introduction of a mesoporous membrane into the assembly enables the transport of any molecular or ionic reactant towards the working electrode, opening the way to study any aqueous phase electrocatalytic system using laboratory-based electrochemical XPS. We exemplify this for the oxygen reduction reaction.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113755"},"PeriodicalIF":3.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
VacuumPub Date : 2024-10-18DOI: 10.1016/j.vacuum.2024.113737
A.I. Il'in , V.K. Egorov , A.A. Ivanov
{"title":"Variations of the elemental composition distribution over the thickness of YBa2Cu3O7-δ thin films obtained by pulsed laser deposition from one target","authors":"A.I. Il'in , V.K. Egorov , A.A. Ivanov","doi":"10.1016/j.vacuum.2024.113737","DOIUrl":"10.1016/j.vacuum.2024.113737","url":null,"abstract":"<div><div>Epitaxial YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7‒δ</sub> (YBCO) films 150–200 and 300 nm thick, respectively, were deposited on SrTiO<sub>3</sub> (100) substrates by pulsed laser deposition at different conditions: with and without using the velocity filtration technique. The films have T(R = 0) in the range of 77.4–87 R(T) depending on the conditions of deposition from one target with YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6.8</sub> composition. The films contain Zn, Sr, Pd, Ag and Ti impurity elements obtained from the target (a total of no more than 2 at. %). Data of the film resistance temperature dependences, X-ray phase analysis, analysis of X-ray fluorescence (XRF) spectra and study of the surface relief by SEM methods revealed the nonuniform distributions of impurity and matrix Y, Ba, Cu elements over the film depth. Impurity concentrations near the surface lead to the formation of faceted spiral pyramids on the surface, which probably evolve into large elongated particles according to the Ostwald mechanism. This knowledge is practically important for optimizing pulsed laser deposition technologies and creating 2D instruments and devices for studying physical phenomena.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113737"},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
VacuumPub Date : 2024-10-18DOI: 10.1016/j.vacuum.2024.113751
Jessica D. Silva , Dilson S. Santos , Vicente T.L. Buono , Leandro A. Santos
{"title":"Influence of hot rolling on microstructure, mechanical properties, and martensitic transformation of TiNiCuNb shape memory alloy","authors":"Jessica D. Silva , Dilson S. Santos , Vicente T.L. Buono , Leandro A. Santos","doi":"10.1016/j.vacuum.2024.113751","DOIUrl":"10.1016/j.vacuum.2024.113751","url":null,"abstract":"<div><div>TiNiCuNb shape memory alloys are a promising new class of materials with the potential to be applied as elastocaloric components. However, the mechanical processing of these alloys remains a challenge and new insights on this topic must enlighten the knowledge about this system. In this work, the effects of hot rolling on Ti<sub>46</sub>Ni<sub>38</sub>Cu<sub>10</sub>Nb<sub>6</sub> alloy were investigated. The results showed that hot rolling leads to the increase of martensitic transformation temperatures and the formation of a matrix containing both B2 and B19 phases. The coarsening of the lamellar eutectic constituent was observed, and part of the β-Nb phase precipitated into the matrix after being dissolved due to hot work. Microstructural aspects and ultra-microhardness measurements suggest that dynamic recrystallization occurred during hot rolling.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"230 ","pages":"Article 113751"},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
VacuumPub Date : 2024-10-18DOI: 10.1016/j.vacuum.2024.113728
Felix Sharipov , Irina Graur , Evelyne Salançon
{"title":"Field ionization intensity used to measure local pressure in gas flows","authors":"Felix Sharipov , Irina Graur , Evelyne Salançon","doi":"10.1016/j.vacuum.2024.113728","DOIUrl":"10.1016/j.vacuum.2024.113728","url":null,"abstract":"<div><div>A coaxial ion source produces an ion beam via field effect in a gas flow through a coaxial microchannel structure. Measuring the intensity of ion emission under an electric voltage condition reveals the pressure at the tip of the coaxial structure, where ionization occurs. The spatial resolution of the measurements is defined by the volume into which the position of the tip fits, here estimated as a cube with an edge of 10 <span><math><mi>μ</mi></math></span>m. The pressure at the tip is also obtained analytically as a function of the throughput through the coaxial structure. The theoretical and experimental pressure values reported in the present work are in agreement between them within the geometric uncertainties of the coaxial structure itself.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113728"},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
VacuumPub Date : 2024-10-16DOI: 10.1016/j.vacuum.2024.113741
Wei Huang , Guangliang Xu , Jing Chen , Wei Shi , Yingchang Yang
{"title":"Bottom-up stripping of graphene with controlled oxidation behaviors towards supercapacitors energy storage","authors":"Wei Huang , Guangliang Xu , Jing Chen , Wei Shi , Yingchang Yang","doi":"10.1016/j.vacuum.2024.113741","DOIUrl":"10.1016/j.vacuum.2024.113741","url":null,"abstract":"<div><div>Due to its distinctive two-dimensional planar structure, room temperature quantum Hall effect, and high strength, graphene has garnered significant interest in the fields of energy storage and conversion. In order to achieve high efficiency in the production of graphene, electrochemical peeling has been extensively investigated. Nevertheless, the intermolecular forces between graphite layers are disrupted during ion intercalation in solution, leading to inconsistent bonding forces and low yields. In order to address the issues above, this study introduces a novel bottom-up electrochemical peeling method, wherein graphite expansion occurs above the electrolyte. By preventing contact between the peeled graphene and the electrolyte, the oxidation of graphene is significantly minimized, resulting in a substantial yield of 88 %. At the current density of 1.0 A g<sup>−1</sup>, the Go-QAS displayed 225.5 F g<sup>−1</sup>, and kept about 220.2 F g<sup>−1</sup> after 500 cycles. The well-designed bottom-up peeling process leads to graphene nanosheets with reduced structural degradation, high purity, and excellent conductivity. This technique is expected to introduce innovative concepts for the field.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"230 ","pages":"Article 113741"},"PeriodicalIF":3.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of discharge power and grid structure on an RF-biased ion thruster","authors":"Jinyuan Yang, Siyuan Zhang, Yuliang Fu, Liwei Zhang, Chenxi Feng, Haolin Li, Guanjun Zhang, Anbang Sun","doi":"10.1016/j.vacuum.2024.113729","DOIUrl":"10.1016/j.vacuum.2024.113729","url":null,"abstract":"<div><div>The RF-biased ion thruster applies radio-frequency (RF) power on the grid system, which can extract both ions and electrons to achieve self-neutralization. The performance of the RF-biased ion thruster is significantly influenced by the structure of the grid system and the discharge power since these factors play a crucial role in determining the focusing condition of the grid system. In this paper, the influence of discharge power and grid structure on the RF-biased ion thruster’s voltage parameters is investigated. According to the screen grid voltage waveform results under different discharge power and grid structure, the relationship between self-bias voltage and RF voltage is acquired. In order to explain the different waveform variations, the impacts of the direct impingement current as well as the oscillation of the upstream sheath voltage are considered in the theoretical calculation for self-bias voltage. It has been found that the opposite oscillation of the upstream sheath voltage is the primary reason for the decline in self-bias voltage. Moreover, the mechanisms through which discharge power and grid structure influence the self-bias voltage are explained in terms of their impact on upstream sheath oscillation. Several methods for increasing the self-bias voltage in RF-biased ion thrusters are also proposed.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113729"},"PeriodicalIF":3.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}