{"title":"石墨烯和石墨中π等离子体激元的第一性原理计算和理论分析:从二维到三维","authors":"Pengfei Li , Ningju Hui","doi":"10.1016/j.vacuum.2025.114424","DOIUrl":null,"url":null,"abstract":"<div><div>Plasmon excitations in graphite, graphene, and their intermediate states have been investigated using first-principles linear response time-dependent density functional theory (LR-TDDFT) within the random phase approximation (RPA) framework, as well as through theoretical analysis based on the tight-binding model. Our findings reveal that in three-dimensional graphite, the dispersion relation of <span><math><mi>π</mi></math></span> plasmons follows the pattern <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>π</mi></mrow></msub><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi><mo>,</mo><mn>0</mn></mrow></msub><mo>+</mo><mi>α</mi><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> as q approaches zero, where <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span> represents the exact excitation energy at q=0 and <span><math><mi>α</mi></math></span> is a fitting parameter. In contrast, in two-dimensional graphene, the dispersion relation exhibits a distinct characteristic given by <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>π</mi></mrow></msub><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mo>=</mo><msqrt><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><mi>β</mi><mi>q</mi></mrow></msqrt></mrow></math></span>, where <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>M</mi></mrow></msub></math></span> is the band gap at the M point in the Brillouin zone and <span><math><mi>β</mi></math></span> is another fitting parameter. This significant difference can be attributed to the presence or absence of interlayer Coulomb interactions. Furthermore, we conducted an in-depth analysis of how the excitation energies of <span><math><mi>π</mi></math></span> plasmons vary with interlayer spacing. The results indicate that the excitation energy follows the form <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi><mo>,</mo><mn>0</mn></mrow></msub><mo>=</mo><msqrt><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><mi>γ</mi><mo>/</mo><mi>d</mi></mrow></msqrt></mrow></math></span>, where d is the distance between two layers and <span><math><mi>γ</mi></math></span> is a fitting constant. Specifically, as the interlayer spacing in graphite gradually increases, the excitation energy of plasmons progressively decreases, eventually converging towards the value observed in graphene.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"240 ","pages":"Article 114424"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles calculations and theoretical analysis of π plasmon in graphene and graphite: From 2D to 3D\",\"authors\":\"Pengfei Li , Ningju Hui\",\"doi\":\"10.1016/j.vacuum.2025.114424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plasmon excitations in graphite, graphene, and their intermediate states have been investigated using first-principles linear response time-dependent density functional theory (LR-TDDFT) within the random phase approximation (RPA) framework, as well as through theoretical analysis based on the tight-binding model. Our findings reveal that in three-dimensional graphite, the dispersion relation of <span><math><mi>π</mi></math></span> plasmons follows the pattern <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>π</mi></mrow></msub><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi><mo>,</mo><mn>0</mn></mrow></msub><mo>+</mo><mi>α</mi><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> as q approaches zero, where <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span> represents the exact excitation energy at q=0 and <span><math><mi>α</mi></math></span> is a fitting parameter. In contrast, in two-dimensional graphene, the dispersion relation exhibits a distinct characteristic given by <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>π</mi></mrow></msub><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mo>=</mo><msqrt><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><mi>β</mi><mi>q</mi></mrow></msqrt></mrow></math></span>, where <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>M</mi></mrow></msub></math></span> is the band gap at the M point in the Brillouin zone and <span><math><mi>β</mi></math></span> is another fitting parameter. This significant difference can be attributed to the presence or absence of interlayer Coulomb interactions. Furthermore, we conducted an in-depth analysis of how the excitation energies of <span><math><mi>π</mi></math></span> plasmons vary with interlayer spacing. The results indicate that the excitation energy follows the form <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>p</mi><mo>,</mo><mn>0</mn></mrow></msub><mo>=</mo><msqrt><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><mi>γ</mi><mo>/</mo><mi>d</mi></mrow></msqrt></mrow></math></span>, where d is the distance between two layers and <span><math><mi>γ</mi></math></span> is a fitting constant. Specifically, as the interlayer spacing in graphite gradually increases, the excitation energy of plasmons progressively decreases, eventually converging towards the value observed in graphene.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"240 \",\"pages\":\"Article 114424\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X25004142\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X25004142","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
First-principles calculations and theoretical analysis of π plasmon in graphene and graphite: From 2D to 3D
Plasmon excitations in graphite, graphene, and their intermediate states have been investigated using first-principles linear response time-dependent density functional theory (LR-TDDFT) within the random phase approximation (RPA) framework, as well as through theoretical analysis based on the tight-binding model. Our findings reveal that in three-dimensional graphite, the dispersion relation of plasmons follows the pattern as q approaches zero, where represents the exact excitation energy at q=0 and is a fitting parameter. In contrast, in two-dimensional graphene, the dispersion relation exhibits a distinct characteristic given by , where is the band gap at the M point in the Brillouin zone and is another fitting parameter. This significant difference can be attributed to the presence or absence of interlayer Coulomb interactions. Furthermore, we conducted an in-depth analysis of how the excitation energies of plasmons vary with interlayer spacing. The results indicate that the excitation energy follows the form , where d is the distance between two layers and is a fitting constant. Specifically, as the interlayer spacing in graphite gradually increases, the excitation energy of plasmons progressively decreases, eventually converging towards the value observed in graphene.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.