Tissue BarriersPub Date : 2024-06-30DOI: 10.1080/21688370.2024.2374628
Mahtab Jahdkaran, Nastaran Asri, Hadi Esmaily, Mohammad Rostami-Nejad
{"title":"Potential of nutraceuticals in celiac disease.","authors":"Mahtab Jahdkaran, Nastaran Asri, Hadi Esmaily, Mohammad Rostami-Nejad","doi":"10.1080/21688370.2024.2374628","DOIUrl":"https://doi.org/10.1080/21688370.2024.2374628","url":null,"abstract":"<p><p>Celiac Disease (CD) is the most common hereditarily-based food intolerance worldwide and a chronic inflammatory condition. The current standard treatment for CD involves strict observance and compliance with a gluten-free diet (GFD). However, maintaining a complete GFD poses challenges, necessitating the exploration of alternative therapeutic approaches. Nutraceuticals, bioactive products bridging nutrition and pharmaceuticals, have emerged as potential candidates to regulate pathways associated with CD and offer therapeutic benefits. Despite extensive research on nutraceuticals in various diseases, their role in CD has been relatively overlooked. This review proposes comprehensively assessing the potential of different nutraceuticals, including phytochemicals, fatty acids, vitamins, minerals, plant-based enzymes, and dietary amino acids, in managing CD. Nutraceuticals exhibit the ability to modulate crucial CD pathways, such as regulating gluten fragment accessibility and digestion, intestinal barrier function, downregulation of tissue transglutaminase (TG2), intestinal epithelial morphology, regulating innate and adaptive immune responses, inflammation, oxidative stress, and gut microbiota composition. However, further investigation is necessary to fully elucidate the underlying cellular and molecular mechanisms behind the therapeutic and prophylactic effects of nutraceuticals for CD. Emphasizing such research would contribute to future developments in CD therapies and interventions.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2374628"},"PeriodicalIF":3.6,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141471058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The roles of tight junction protein cingulin in human endometrioid endometrial cancer.","authors":"Arisa Kura, Kimihito Saito, Takumi Konno, Takayuki Kohno, Hiroshi Shimada, Tadahi Okada, Soshi Nishida, Daichi Ishii, Motoki Matsuura, Tsuyoshi Saito, Takashi Kojima","doi":"10.1080/21688370.2024.2361976","DOIUrl":"https://doi.org/10.1080/21688370.2024.2361976","url":null,"abstract":"<p><p>The bicellular tight junction molecule cingulin (CGN) binds to microtubules in centrosomes. Furthermore, CGN contributes to the tricellular tight junction (tTJ) proteins lipolysis-stimulated lipoprotein receptor (LSR) and tricellulin (TRIC). CGN as well as LSR decreased during the malignancy of endometrioid endometrial cancer (EEC). Although tTJ protein LSR is involved in the malignancy of some cancers, including EEC, the role of CGN is unknown. In this study, we investigated the roles of CGN with tTJ proteins in human EEC cells by using the CGN-overexpressing EEC cell line Sawano. In 2D cultures, CGN was colocalized with LSR and TRIC at tTJ or at γ-tubulin-positive centrosomes. In immunoprecipitation with CGN antibodies, CGN directly bound to LSR, TRIC, and β-tubulin. Knockdown of CGN by the siRNA decreased the epithelial barrier and enhanced cell proliferation, migration and invasion, as well as knockdown of LSR. In the Sawano cells cocultured with normal human endometrial stromal cells, knockdown of CGN decreased expression of LSR and TRIC via MAPK and AMPK pathways. In 2.5D cultures, knockdown of CGN induced the formation of abnormal cysts and increased the permeability of FD-4 to the lumen. In 2D and 2.5D cultures, treatment with β-estradiol with or without EGF or TGF-β decreased CGN expression and the epithelial permeability barrier and enhanced cell migration, and pretreatment with EW7197+AG1478, U0126 or an anti-IL-6 antibody prevented this. In conclusion, CGN, with tTJ proteins might suppress the malignancy of human EEC and its complex proteins are sensitive to estrogen and growth factors derived from stromal cells.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2361976"},"PeriodicalIF":3.1,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2024-05-31DOI: 10.1080/21688370.2024.2361197
Jie Chen, Changjie Liu, Yuan Yang, Xue Gong, Huan Qian
{"title":"The stratum corneum barrier: impaired function in relation to associated lipids and proteins.","authors":"Jie Chen, Changjie Liu, Yuan Yang, Xue Gong, Huan Qian","doi":"10.1080/21688370.2024.2361197","DOIUrl":"https://doi.org/10.1080/21688370.2024.2361197","url":null,"abstract":"<p><p>The skin is the largest organ of the human body and is widely considered to be the first-line defense of the body, providing essential protection against mechanical, physical, and chemical damage. Keratinocytes are the primary cells of the outer layer of the epidermis, which acts as a mechanical and permeability barrier. The epidermis is a permanently renewed tissue where undifferentiated keratinocytes located at the basal layer proliferate and migrate to the overlying layers. Here we report that some components of keratinocytes affect the formation and differentiation of the stratum corneum, which is the most specialized layer of the epidermis.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2361197"},"PeriodicalIF":3.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2024-05-29DOI: 10.1080/21688370.2024.2361202
Margarita Shuvalova, Anastasiia Dmitrieva, Vsevolod Belousov, Georgii Nosov
{"title":"The role of reactive oxygen species in the regulation of the blood-brain barrier.","authors":"Margarita Shuvalova, Anastasiia Dmitrieva, Vsevolod Belousov, Georgii Nosov","doi":"10.1080/21688370.2024.2361202","DOIUrl":"https://doi.org/10.1080/21688370.2024.2361202","url":null,"abstract":"<p><p>The blood-brain barrier (BBB) regulates the exchange of metabolites and cells between the blood and brain, and maintains central nervous system homeostasis. Various factors affect BBB barrier functions, including reactive oxygen species (ROS). ROS can act as stressors, damaging biological molecules, but they also serve as secondary messengers in intracellular signaling cascades during redox signaling. The impact of ROS on the BBB has been observed in multiple sclerosis, stroke, trauma, and other neurological disorders, making blocking ROS generation a promising therapeutic strategy for BBB dysfunction. However, it is important to consider ROS generation during normal BBB functioning for signaling purposes. This review summarizes data on proteins expressed by BBB cells that can be targets of redox signaling or oxidative stress. It also provides examples of signaling molecules whose impact may cause ROS generation in the BBB, as well as discusses the most common diseases associated with BBB dysfunction and excessive ROS generation, open questions that arise in the study of this problem, and possible ways to overcome them.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2361202"},"PeriodicalIF":3.1,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2024-05-22DOI: 10.1080/21688370.2024.2357406
Deependra Singh, Saurabh Kumar, Rajnikant Mishra, Anjali, R K Tripathi, Monika Sachdev
{"title":"HIV1-Nef perturbs the integrity of blood testis barrier in rat model.","authors":"Deependra Singh, Saurabh Kumar, Rajnikant Mishra, Anjali, R K Tripathi, Monika Sachdev","doi":"10.1080/21688370.2024.2357406","DOIUrl":"https://doi.org/10.1080/21688370.2024.2357406","url":null,"abstract":"<p><p>The blood-testis barrier is a specialized feature within the mammalian testis, located in close proximity to the basement membrane of seminiferous tubules. This barrier serves to divide the seminiferous epithelium into distinct basal and adluminal (apical) compartments. The selectivity of the BTB to foreign particles makes it a safe haven for the virus, and the high affinity of HIV for testis might lead to the vertical transmission of the virus. In the present study, recombinant HIV1-Nef (rNef) protein was injected intravenously to examine the effect of rNef on BTB. SD male rats received 250 µg and 500 µg of rNef along with 2% Evans blue dye within 1 ml through the tail vein. After 1 hour of perfusion, the animals were sacrificed for analysis. The dye migration assay and ELISA confirmed a significant impairment in the blood-testis barrier (BTB) and the manifestation of rNef in testes tissues, respectively. Moreover, a decline in the expression of tight junction proteins, including ZO1 and Occludin, was observed during rNef-induced BTB disruption. Overall, our findings demonstrated that rNef induces BTB disruption through various signaling events. At the site of ectoplasmic specialization of the seminiferous epithelium, the localization of cadherins was found to be disrupted, making the testis a vulnerable site. In conclusion, rNef perturbs the integrity of the blood-testis barrier in rat models; hence, it can also serve as a suitable model for studying the dynamics of the blood-testis barrier.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2357406"},"PeriodicalIF":3.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2024-05-09DOI: 10.1080/21688370.2024.2347062
Ana Špilak, Andreas Brachner, Heinz-Peter Friedl, Adrián Klepe, Christa Nöhammer, Winfried Neuhaus
{"title":"Effects of small extracellular vesicles derived from normoxia- and hypoxia-treated prostate cancer cells on the submandibular salivary gland epithelium <i>in vitro</i>.","authors":"Ana Špilak, Andreas Brachner, Heinz-Peter Friedl, Adrián Klepe, Christa Nöhammer, Winfried Neuhaus","doi":"10.1080/21688370.2024.2347062","DOIUrl":"https://doi.org/10.1080/21688370.2024.2347062","url":null,"abstract":"<p><p>Small extracellular vesicles (sEVs) are an important part of intercellular communication. They are phospholipid bilayer particles that carry active biomolecules such as proteins, various nucleic acids, and lipids. In recipient cells, sEVs can alter cellular functions, including cancer development and premetastatic niche formation in distant organs. Moreover, sEVs can carry cancer-specific features, which makes them promising biomarker candidates. However, the interactions of sEVs with biological barriers and consequences thereof, are not clarified yet. The blood-saliva barrier is crucial for preventing the entry of pathogens and (in)organic substances into the bloodstream, as well as molecule filtration from blood to saliva. The effects of brain derived DU145 prostate cancer (PCa) sEVs on a human submandibular salivary gland barrier (SSGB) <i>in vitro</i> were investigated. Small EVs were harvested from normoxic (N, atmospheric O<sub>2</sub>) or hypoxic (H, 1% O<sub>2</sub>) conditions, fluorescently labeled with CellTracker<sup>TM</sup> Orange and thoroughly characterized. HTB-41 B2 cells were used as SSGB model cultured on 24-well ThinCert® inserts. After model optimization indicating effects of serum and serum-sEVs on barrier properties, PCa sEVs were applied to the basolateral (blood) side in either 10% serum, or serum-free conditions, and barrier integrity was continuously monitored for 40 hours. This study found that H and N PCa sEVs were uptaken by the SSGB <i>in vitro</i> model in similar quantities regardless of the media composition in the basolateral compartment. Permeation of fluorescent PCa sEVs into the apical compartment was not detectable with the applied methods. However, treatment with H and N sEVs under different serum conditions revealed distinct molecular clusters after hierarchical analysis of mRNA data measured by high-throughput qPCR, which were partly reflected at the protein level. For example, serum-reduction dependent decrease of barrier properties was accompanied with the decrease of CDH1 or Claudin-7 expression. Interestingly, the presence of H sEVs significantly increased the number of sEV-sized particles in the apical compartment of the SSGB model compared to basolaterally added N sEVs. This functional effect on the number of particles in the saliva (apical) compartment induced by different sEVs applied in the blood (basolateral) compartment might be a new approach to understand one possible mechanism how differences of salivary EVs might occur which then could be used as biomarker.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2347062"},"PeriodicalIF":3.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2024-05-07DOI: 10.1080/21688370.2024.2350821
Arshad Hashmat, Jingyuan Ya, Rais Kadir, Mansour Alwjwaj, Ulvi Bayraktutan
{"title":"Hyperglycaemia perturbs blood-brain barrier integrity through its effects on endothelial cell characteristics and function.","authors":"Arshad Hashmat, Jingyuan Ya, Rais Kadir, Mansour Alwjwaj, Ulvi Bayraktutan","doi":"10.1080/21688370.2024.2350821","DOIUrl":"https://doi.org/10.1080/21688370.2024.2350821","url":null,"abstract":"<p><p>Breakdown of blood-brain barrier (BBB) represents a key pathology in hyperglycemia-mediated cerebrovascular damage after an ischemic stroke. As changes in the level and nature of vasoactive agents released by endothelial cells (ECs) may contribute to BBB dysfunction, this study first explored the specific impact of hyperglycemia on EC characteristics and secretome. It then assessed whether secretome obtained from ECs subjected to normoglycaemia or hyperglycemia might regulate pericytic cytokine profile differently. Using a triple cell culture model of human BBB, composed of brain microvascular EC (BMEC), astrocytes and pericytes, this study showed that exposure to hyperglycemia (25 mM D-glucose) for 72 h impaired the BBB integrity and function as evidenced by decreases in transendothelial electrical resistance and increases in paracellular flux of sodium fluorescein. Dissolution of zonula occludens-1, a tight junction protein, and appearance of stress fibers appeared to play a key role in this pathology. Despite elevations in angiogenin, endothelin-1, interleukin-8 and basic fibroblast growth factor levels and a decrease in placental growth factor levels in BMEC subjected to hyperglycemia vs normoglycaemia (5.5 mM D-glucose), tubulogenic capacity of BMECs remained similar in both settings. Similarly, pericytes subjected to secretome obtained from hyperglycemic BMEC released higher quantities of macrophage migration inhibitory factor and serpin and lower quantities of monocyte chemoattractant protein-1, intercellular adhesion molecule, interleukin-6 and interleukin-8. Taken together these findings indicate the complexity of the mechanisms leading to BBB disruption in hyperglycemic settings and emphasize the importance of endothelial cell-pericyte axis in the development of novel therapeutic strategies.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2350821"},"PeriodicalIF":3.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140871984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2024-05-07DOI: 10.1080/21688370.2024.2348852
Ioannis A Voutsadakis
{"title":"Molecular alterations in claudin 18 suppressed and non-suppressed gastric adenocarcinomas to guide targeted therapies.","authors":"Ioannis A Voutsadakis","doi":"10.1080/21688370.2024.2348852","DOIUrl":"https://doi.org/10.1080/21688370.2024.2348852","url":null,"abstract":"<p><strong>Background: </strong>Gastric adenocarcinoma represents an aggressive type of cancer and an important cause of cancer mortality. Progress in gastric cancer therapeutics has resulted from a better understanding of the molecular pathogenesis of the disease and introduction of targeted therapies, but most gastric cancer patients still rely on non-targeted chemotherapy as the mainstay of treatment for advanced disease.</p><p><strong>Methods: </strong>An analysis of publicly available series from The Cancer Genome Atlas (TCGA) gastric cancer cohort was undertaken to delineate the clinical and genomic landscape of gastric cancers with suppressed expression of claudin 18 compared with cancers with non-suppressed claudin 18. Claudin 18 suppressed cancers were defined as having an mRNA expression z-score relative to normal samples (log RNA Seq V2) of less than -1. Claudin 18 non-suppressed cancers were defined as having an mRNA expression z-score relative to normal samples (log RNA Seq V2) above 0.5.</p><p><strong>Results: </strong>Gastric cancers with claudin 18 mRNA suppression represented 7.7% of the gastric adenocarcinomas of TCGA cohort, while non-suppressed cancers represented 46.6% of the cases. The two groups did not differ in clinical and genomic characteristics, such as mean age, histology, grade, and stage. The mutation landscape of claudin 18 suppressed cases included high mutation rates of TP53, of genes of the WNT/β-catenin pathway and of ubiquitin ligase <i>FBXW7</i>. Moreover, a subset of both claudin 18 suppressed and non-suppressed cancers displayed mutations in Mismatch Repair (MMR) associated genes or a high tumor mutation burden (TMB). At the mRNA expression level, claudin 18 suppressed gastric cancers showed up-regulation of EMT core transcription factor Snail 2 and down-regulation of genes of HLA cluster. The survival of gastric cancer patients with claudin 18 mRNA suppression was not significantly different compared with patients with non-suppressed claudin 18.</p><p><strong>Conclusion: </strong>Sub-sets of gastric cancers with claudin 18 mRNA suppression displayed characteristics of potential therapeutic interest, such as mutations in WNT and PI3K pathways and MMR defects. These may guide the development of alternative targeted therapies, in this sub-set of gastric cancers which are not candidates for claudin 18 targeting therapies.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2348852"},"PeriodicalIF":3.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140872223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The correlation between fecal microbiota profiles and intracellular junction genes expression in young Iranian patients with celiac disease.","authors":"Mohadeseh Mahmoudi Ghehsareh, Nastaran Asri, Fahimeh Sadat Gholam-Mostafaei, Hamidreza Houri, Flora Forouzesh, Shokoufeh Ahmadipour, Somayeh Jahani-Sherafat, Mohammad Rostami-Nejad, Pasquale Mansueto, Aurelio Seidita","doi":"10.1080/21688370.2024.2347766","DOIUrl":"https://doi.org/10.1080/21688370.2024.2347766","url":null,"abstract":"<p><p>Celiac disease (CD) is characterized by the disruption of the intestinal barrier integrity and alterations in the microbiota composition. This study aimed to evaluate the changes in the fecal microbiota profile and mRNA expressions of intracellular junction-related genes in pediatric patients with CD compared to healthy controls (HCs). Thirty treated CD patients, 10 active CD, and 40 HCs were recruited. Peripheral blood (PB) and fecal samples were collected. Microbiota analysis was performed using quantitative real-time PCR (qPCR) test. The mRNA expressions of ZO-1, occludin, β-catenin, E-cadherin, and COX-2 were also evaluated. In active and treated CD patients, the PB expression levels of ZO-1 (<i>p</i> = 0.04 and 0.002, respectively) and β-catenin (<i>p</i> = 0.006 and 0.02, respectively) were lower than in HCs. PB Occludin's level was upregulated in both active and treated CD patients compared to HCs (<i>p</i> = 0.04 and 0.02, respectively). However, PB E-cadherin and COX-2 expression levels and fecal mRNA expressions of ZO-1, occludin, and COX-2 did not differ significantly between cases and HCs (P˃0.05). Active CD patients had a higher relative abundance of the <i>Firmicutes</i> (<i>p</i> = 0.04) and <i>Actinobacteria</i> (<i>p</i> = 0.03) phyla compared to treated subjects. The relative abundance of <i>Veillonella</i> (<i>p</i> = 0.04) and <i>Staphylococcus</i> (<i>p</i> = 0.01) genera was lower in active patients in comparison to HCs. Researchers should explore the precise impact of the gut microbiome on the molecules and mechanisms involved in intestinal damage of CD. Special attention should be given to <i>Bifidobacteria</i> and Enterobacteriaceae, as they have shown a significant correlation with the expression of tight junction-related genes.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2347766"},"PeriodicalIF":3.1,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140870223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2024-04-29DOI: 10.1080/21688370.2024.2347070
Abdullah Alhumaid, Fang Liu, Shengshuai Shan, Eissa Jafari, Nadia Nourin, Payaningal R Somanath, S Priya Narayanan
{"title":"Spermine oxidase inhibitor, MDL 72527, reduced neovascularization, vascular permeability, and acrolein-conjugated proteins in a mouse model of ischemic retinopathy.","authors":"Abdullah Alhumaid, Fang Liu, Shengshuai Shan, Eissa Jafari, Nadia Nourin, Payaningal R Somanath, S Priya Narayanan","doi":"10.1080/21688370.2024.2347070","DOIUrl":"10.1080/21688370.2024.2347070","url":null,"abstract":"<p><p>Disruptions in polyamine metabolism have been identified as contributing factors to various central nervous system disorders. Our laboratory has previously highlighted the crucial role of polyamine oxidation in retinal disease models, specifically noting elevated levels of spermine oxidase (SMOX) in inner retinal neurons. Our prior research demonstrated that inhibiting SMOX with MDL 72527 protected against vascular injury and microglial activation induced by hyperoxia in the retina. However, the effects of SMOX inhibition on retinal neovascularization and vascular permeability, along with the underlying molecular mechanisms of vascular protection, remain incompletely understood. In this study, we utilized the oxygen-induced retinopathy (OIR) model to explore the impact of SMOX inhibition on retinal neovascularization, vascular permeability, and the molecular mechanisms underlying MDL 72527-mediated vasoprotection in the OIR retina. Our findings indicate that inhibiting SMOX with MDL 72527 mitigated vaso-obliteration and neovascularization in the OIR retina. Additionally, it reduced OIR-induced vascular permeability and Claudin-5 expression, suppressed acrolein-conjugated protein levels, and downregulated P38/ERK1/2/STAT3 signaling. Furthermore, our results revealed that treatment with BSA-Acrolein conjugates significantly decreased the viability of human retinal endothelial cells (HRECs) and activated P38 signaling. These observations contribute valuable insights into the potential therapeutic benefits of SMOX inhibition by MDL 72527 in ischemic retinopathy.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2347070"},"PeriodicalIF":3.1,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140851564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}