Trends in Plant SciencePub Date : 2025-06-01Epub Date: 2025-01-30DOI: 10.1016/j.tplants.2025.01.005
Muhammad Kamran, Mark T Waters
{"title":"Engineering crop resilience with synthetic gene circuits.","authors":"Muhammad Kamran, Mark T Waters","doi":"10.1016/j.tplants.2025.01.005","DOIUrl":"10.1016/j.tplants.2025.01.005","url":null,"abstract":"<p><p>Engineering crops to withstand environmental stresses is critical for addressing climate change and food insecurity. Recently, Khan et al. developed CRISPR interference (CRISPRi)-based synthetic gene circuits to program gene expression in plants. Their findings highlight the potential of these circuits to advance the development of stress-resilient crops.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"582-584"},"PeriodicalIF":17.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143075499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-06-01Epub Date: 2025-02-04DOI: 10.1016/j.tplants.2025.01.002
Jiankun Li, Yanwen Yu, Yihao Zhang, Mingyue Gou
{"title":"Sophisticated regulation of broad-spectrum disease resistance in maize.","authors":"Jiankun Li, Yanwen Yu, Yihao Zhang, Mingyue Gou","doi":"10.1016/j.tplants.2025.01.002","DOIUrl":"10.1016/j.tplants.2025.01.002","url":null,"abstract":"<p><p>Maize production suffers largely from the unpredictable and often simultaneous occurrence of multiple diseases, highlighting the urgent need for broad-spectrum resistant (BSR) genes. Recently, Zhu et al. identified a ZmCPK39-ZmDi19-ZmPR10 module that confers resistance to three maize (Zea mays) foliar diseases, providing a strategic framework to improve maize BSR.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"579-581"},"PeriodicalIF":17.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143256833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-06-01Epub Date: 2024-12-19DOI: 10.1016/j.tplants.2024.11.012
Lisha Shen
{"title":"Epitranscriptomic regulation through phase separation in plants.","authors":"Lisha Shen","doi":"10.1016/j.tplants.2024.11.012","DOIUrl":"10.1016/j.tplants.2024.11.012","url":null,"abstract":"<p><p>Epitranscriptomic regulation has emerged as a crucial layer of gene control where RNA modifications, particularly N<sup>6</sup>-methyladenosine (m<sup>6</sup>A), introduce complexity and versatility to gene regulation. Increasing evidence suggests that epitranscriptomic regulation through phase separation plays critical roles in mediating RNA metabolism during plant development and stress responses. m<sup>6</sup>A-associated biomolecular condensates formed via phase separation act as dynamic cellular hotspots where m<sup>6</sup>A effectors, RNAs, and other regulatory proteins coalesce to facilitate RNA regulation. Moreover, m<sup>6</sup>A modulates condensate assembly. Herein, I summarize the current understanding of how m<sup>6</sup>A- and m<sup>6</sup>A effector-mediated formation of biomolecular condensates mediates plant development and stress adaptation. I also discuss several working models for m<sup>6</sup>A-associated biomolecular condensates and highlight the prospects for future research on epitranscriptomic regulation through phase separation.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"629-641"},"PeriodicalIF":17.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-06-01Epub Date: 2024-12-13DOI: 10.1016/j.tplants.2024.11.007
Joaquín Clúa, Aime Jaskolowski, Luciano A Abriata, Yves Poirier
{"title":"Spotlight on cytochrome b561 and DOMON domain proteins.","authors":"Joaquín Clúa, Aime Jaskolowski, Luciano A Abriata, Yves Poirier","doi":"10.1016/j.tplants.2024.11.007","DOIUrl":"10.1016/j.tplants.2024.11.007","url":null,"abstract":"<p><p>Biotic and abiotic stresses constrain plant growth worldwide. Therefore, understanding the molecular mechanisms contributing to plant resilience is key to achieving food security. In recent years, proteins containing dopamine β-monooxygenase N-terminal (DOMON) and/or cytochrome b561 domains have been identified as important regulators of plant responses to multiple stress factors. Recent findings show that these proteins control the redox states of different cellular compartments to modulate plant development, stress responses, and iron homeostasis. In this review, we analyze the distribution and structure of proteins with DOMON and/or cytochrome b561 domains in model plants. We also discuss their biological roles and the molecular mechanisms by which this poorly characterized group of proteins exert their functions.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"665-677"},"PeriodicalIF":17.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-06-01Epub Date: 2024-11-29DOI: 10.1016/j.tplants.2024.11.003
Rhowell N Tiozon, Bert Lenaerts, Sakshi Kor, Matty Demont, Alisdair R Fernie, Nese Sreenivasulu
{"title":"Low glycemic index rice: a healthier diet for countering diabetes epidemic in Asia.","authors":"Rhowell N Tiozon, Bert Lenaerts, Sakshi Kor, Matty Demont, Alisdair R Fernie, Nese Sreenivasulu","doi":"10.1016/j.tplants.2024.11.003","DOIUrl":"10.1016/j.tplants.2024.11.003","url":null,"abstract":"<p><p>The prevalence of type 2 diabetes is rising worldwide, particularly in Asia, where rice is a dietary staple. Hence, it is essential to consume low glycemic index (GI) food. Here, we review the potential of low GI and high resistant starch (RS) of rice to mitigate diabetes risk. Progress has been made in lowering the GI of rice without compromising yield and grain quality through marker-assisted breeding techniques. To enhance RS content, mutation breeding and genome editing were used. Deployment of these new varieties in global food systems remains critical through policy initiatives such as 'Seeds without Borders' and the widespread deregulation of genome editing plants that can expedite the wider adoption of low-GI and high-RS rice.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"603-614"},"PeriodicalIF":17.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142772686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-06-01Epub Date: 2025-02-20DOI: 10.1016/j.tplants.2025.01.008
Alberto González-Delgado, José M Jiménez-Gómez, Krzysztof Wabnik
{"title":"Regulatory principles of photoperiod-driven clock function in plants.","authors":"Alberto González-Delgado, José M Jiménez-Gómez, Krzysztof Wabnik","doi":"10.1016/j.tplants.2025.01.008","DOIUrl":"10.1016/j.tplants.2025.01.008","url":null,"abstract":"<p><p>The circadian clock provides a fundamental timing mechanism for plant fitting to seasonal changes in the photoperiod. Although photoperiodic regulation of developmental transition has been studied in several species, our understanding of core circadian clock parallelisms across species is sparse. Here we present a comparative analysis of circadian clock networks by identifying common regulatory principles that govern key genes in photoperiodic developmental transition. Using time-course transcriptomic datasets from long-day plants and short-day plants taken in different photoperiods, we propose a model that integrates a minimal set of circadian clock components to predict the necessary conditions governing species-specific clock outputs. This study identifies regulatory patterns associated with circadian clock function across different plants, linking photoperiod interpretation with minimal clock architecture.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"594-602"},"PeriodicalIF":17.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-06-01Epub Date: 2025-04-22DOI: 10.1016/j.tplants.2025.03.020
Zhaolei Li, Xueping Zhou, Fangfang Li
{"title":"H<sub>2</sub>O<sub>2</sub>-driven plant immunity requires post-translational modification as a switch.","authors":"Zhaolei Li, Xueping Zhou, Fangfang Li","doi":"10.1016/j.tplants.2025.03.020","DOIUrl":"10.1016/j.tplants.2025.03.020","url":null,"abstract":"<p><p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) has an essential role in plant stress and immunity responses, but how H<sub>2</sub>O<sub>2</sub> regulates these processes remain unclear. Recent findings showed that H<sub>2</sub>O<sub>2</sub> enhances resistance in infected or distal tissues by fine-tuning the post-translational modifications (PTMs) of two key transcription factors, basic helix-loop-helix 25 (bHLH25) and CCA1 HIKING EXPEDITION (CHE), within plant immunity signaling pathways.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"591-593"},"PeriodicalIF":17.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144028165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-06-01Epub Date: 2024-12-18DOI: 10.1016/j.tplants.2024.11.010
Diogo P Godinho, Romana J R Yanez, Paula Duque
{"title":"Pathogen-responsive alternative splicing in plant immunity.","authors":"Diogo P Godinho, Romana J R Yanez, Paula Duque","doi":"10.1016/j.tplants.2024.11.010","DOIUrl":"10.1016/j.tplants.2024.11.010","url":null,"abstract":"<p><p>Plant immunity involves a complex and finely tuned response to a wide variety of pathogens. Alternative splicing, a post-transcriptional mechanism that generates multiple transcripts from a single gene, enhances both the versatility and effectiveness of the plant immune system. Pathogen infection induces alternative splicing in numerous plant genes involved in the two primary layers of pathogen recognition: pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). However, the mechanisms underlying pathogen-responsive alternative splicing are just beginning to be understood. In this article, we review recent findings demonstrating that the interaction between pathogen elicitors and plant receptors modulates the phosphorylation status of splicing factors, altering their function, and that pathogen effectors target components of the host spliceosome, controlling the splicing of plant immunity-related genes.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"615-628"},"PeriodicalIF":17.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-06-01Epub Date: 2024-12-18DOI: 10.1016/j.tplants.2024.11.014
Ziyi Feng, Anna Zioutopoulou, Tianyuan Xu, Jigang Li, Eirini Kaiserli
{"title":"TANDEM ZINC-FINGER/PLUS3: a multifaceted integrator of light signaling.","authors":"Ziyi Feng, Anna Zioutopoulou, Tianyuan Xu, Jigang Li, Eirini Kaiserli","doi":"10.1016/j.tplants.2024.11.014","DOIUrl":"10.1016/j.tplants.2024.11.014","url":null,"abstract":"<p><p>TANDEM ZINC-FINGER/PLUS3 (TZP) is a nuclear-localized protein with multifaceted roles in modulating plant growth and development under diverse light conditions. The unique combination of two intrinsically disordered regions (IDRs), two zinc-fingers (ZFs), and a PLUS3 domain provide a platform for interactions with the photoreceptors phytochrome A (phyA) and phyB, light signaling components, and nucleic acids. TZP controls flowering and hypocotyl elongation by regulating gene expression and protein abundance in a blue, red, or far-red light-specific context. Recently, TZP was shown to undergo liquid-liquid phase separation through its IDRs, thus promoting phyA phosphorylation. Collectively, TZP is an emerging regulator of diverse light signaling pathways; therefore, understanding its biochemical function in integrating environmental signaling networks is key for optimizing plant adaptation.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"654-664"},"PeriodicalIF":17.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}