{"title":"玉米广谱抗病性的精细调控。","authors":"Jiankun Li, Yanwen Yu, Yihao Zhang, Mingyue Gou","doi":"10.1016/j.tplants.2025.01.002","DOIUrl":null,"url":null,"abstract":"<p><p>Maize production suffers largely from the unpredictable and often simultaneous occurrence of multiple diseases, highlighting the urgent need for broad-spectrum resistant (BSR) genes. Recently, Zhu et al. identified a ZmCPK39-ZmDi19-ZmPR10 module that confers resistance to three maize (Zea mays) foliar diseases, providing a strategic framework to improve maize BSR.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"579-581"},"PeriodicalIF":17.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sophisticated regulation of broad-spectrum disease resistance in maize.\",\"authors\":\"Jiankun Li, Yanwen Yu, Yihao Zhang, Mingyue Gou\",\"doi\":\"10.1016/j.tplants.2025.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maize production suffers largely from the unpredictable and often simultaneous occurrence of multiple diseases, highlighting the urgent need for broad-spectrum resistant (BSR) genes. Recently, Zhu et al. identified a ZmCPK39-ZmDi19-ZmPR10 module that confers resistance to three maize (Zea mays) foliar diseases, providing a strategic framework to improve maize BSR.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":\" \",\"pages\":\"579-581\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2025.01.002\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2025.01.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Sophisticated regulation of broad-spectrum disease resistance in maize.
Maize production suffers largely from the unpredictable and often simultaneous occurrence of multiple diseases, highlighting the urgent need for broad-spectrum resistant (BSR) genes. Recently, Zhu et al. identified a ZmCPK39-ZmDi19-ZmPR10 module that confers resistance to three maize (Zea mays) foliar diseases, providing a strategic framework to improve maize BSR.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.