Transgenic Research最新文献

筛选
英文 中文
Multiplexed gene editing in citrus by using a multi-intron containing Cas9 gene. 使用含有多内含子的 Cas9 基因对柑橘进行多重基因编辑。
IF 3 3区 生物学
Transgenic Research Pub Date : 2024-04-01 Epub Date: 2024-04-02 DOI: 10.1007/s11248-024-00380-2
Poulami Sarkar, Jorge Santiago Vazquez, Mingxi Zhou, Amit Levy, Zhonglin Mou, Vladimir Orbović
{"title":"Multiplexed gene editing in citrus by using a multi-intron containing Cas9 gene.","authors":"Poulami Sarkar, Jorge Santiago Vazquez, Mingxi Zhou, Amit Levy, Zhonglin Mou, Vladimir Orbović","doi":"10.1007/s11248-024-00380-2","DOIUrl":"10.1007/s11248-024-00380-2","url":null,"abstract":"<p><p>Several expression systems have been developed in clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) framework allowing for gene editing of disease-associated genes across diverse citrus varieties. In this study, we present a new approach employing a multi-intron containing Cas9 gene plus multiple gRNAs separated with tRNA sequences to target the phytoene desaturase gene in both 'Carrizo' citrange and 'Duncan' grapefruit. Notably, using this unified vector significantly boosted editing efficiency in both citrus varieties, showcasing mutations in all three designated targets. The implementation of this multiplex gene editing system with a multi-intron-containing Cas9 plus a gRNA-tRNA array demonstrates a promising avenue for efficient citrus genome editing, equipping us with potent tools in the ongoing battle against several diseases such as canker and huanglongbing.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140336882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficiency of the alpha-hairpinin SmAMP-X gene promoter from Stellaria media plant depends on selection of transgenic approach 贝壳蕨类植物中α-发素 SmAMP-X 基因启动子的效率取决于转基因方法的选择
IF 3 3区 生物学
Transgenic Research Pub Date : 2023-12-10 DOI: 10.1007/s11248-023-00374-6
Lyubov A. Ivanova, Roman A. Komakhin
{"title":"Efficiency of the alpha-hairpinin SmAMP-X gene promoter from Stellaria media plant depends on selection of transgenic approach","authors":"Lyubov A. Ivanova, Roman A. Komakhin","doi":"10.1007/s11248-023-00374-6","DOIUrl":"https://doi.org/10.1007/s11248-023-00374-6","url":null,"abstract":"<p>The antimicrobial activity of the <i>alpha-HAIRPININ ANTIMICROBIAL PEPTIDE X</i> (<i>SmAMP-X</i> gene, GenBank acc. No. HG423454.1) from <i>Stellaria media</i> plant has been shown in vitro. Here, we isolated the <i>SmAMP-X</i> gene promoter and found two genomic sequences for the promoter (designated pro-SmAMP-X and pro-SmAMP-X-Ψ2) with 83% identity in their core and proximal regions. We found that the abilities of these promoters to express the <i>uidA</i> reporter and the <i>nptII</i> selectable marker differ according to the structural organization of T-DNA in the binary vector used for plant transformation. Analysis of <i>Agrobacterium</i>-infiltrated <i>Nicotiana benthamiana</i> leaves, transgenic <i>Arabidopsis thaliana</i> lines, and transgenic <i>Solanum tuberosum</i> plants revealed that both promoters in the pCambia1381Z and pCambia2301 binary vectors generate 42–100% of the ß-glucuronidase (GUS) activity generated by the CaMV35S promoter. According to 5’-RACE (rapid amplification of cDNA ends) analysis, both plant promoters are influenced by the CaMV35S enhancer used to express selectable markers in the T-DNA region of pCambia1381Z and pCambia2301. The exclusion of CaMV35S enhancer from the T-DNA region significantly reduces the efficiency of pro-SmAMP-X-Ψ2 promoter for GUS production. Both promoters in the pCambia2300 vector without CaMV35S enhancer in the T-DNA region weakly express the <i>nptII</i> selectable marker in different tissues of transgenic <i>N. tabacum</i> plants and enable selection of transgenic cells in media with a high concentration of kanamycin. Overall, promoter sequences must be functionally validated in binary vectors lacking CaMV35S enhancer.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138563153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient transformation and regeneration of transgenic plants in commercial cultivars of Citrus aurantifolia and Citrus sinensis. 枳壳和中华枳商业栽培品种中转基因植物的高效转化和再生。
IF 3 3区 生物学
Transgenic Research Pub Date : 2023-12-01 Epub Date: 2023-09-13 DOI: 10.1007/s11248-023-00367-5
Sweta Singh, Zeba Tarannum, Sunil Kokane, Dilip K Ghosh, Ashwani K Sharma, Harsh Chauhan
{"title":"Efficient transformation and regeneration of transgenic plants in commercial cultivars of Citrus aurantifolia and Citrus sinensis.","authors":"Sweta Singh, Zeba Tarannum, Sunil Kokane, Dilip K Ghosh, Ashwani K Sharma, Harsh Chauhan","doi":"10.1007/s11248-023-00367-5","DOIUrl":"10.1007/s11248-023-00367-5","url":null,"abstract":"<p><p>Citrus is one of the major horticultural crops with high economic and nutraceutical value. Despite the fact that conventional research has developed numerous improved varieties, citriculture is still susceptible to various stresses and requires innovative solutions such as genetic engineering. Among all the currently available modern approaches, Agrobacterium-mediated transformation is the most efficient method for introducing desired traits in citrus. However, being a non-host for Agrobacterium, various citrus species, including Citrus aurantifolia and Citrus sinensis, are recalcitrant to this method. The available reports on Agrobacterium-mediated transformation of commercial citrus cultivars show very low transformation efficiency with poor recovery rates of whole transgenic plantlets. Here, we provide an efficient and reliable procedure of Agrobacterium-mediated transformation for both C. aurantifolia and C. sinensis. This protocol depends on providing callus-inducing treatment to explants before and during Agrobacterium co-cultivation, using optimum conditions for shoot regeneration and modifying in-vitro micrografting protocol to combat the loss of transgenic lines. As transgenic citrus shoots are difficult to root, we also developed the ideal conditions for their rooting. Using this protocol, the whole transgenic plantlets of C. aurantifolia and C. sinensis can be developed in about ~ 4 months, with transformation efficiency of 30% and 22% for the respective species.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10222383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation and validation of a myoglobin knockout zebrafish model. 肌红蛋白敲除斑马鱼模型的产生和验证。
IF 3 3区 生物学
Transgenic Research Pub Date : 2023-12-01 Epub Date: 2023-10-17 DOI: 10.1007/s11248-023-00369-3
Rasmus Hejlesen, Kasper Kjær-Sørensen, Angela Fago, Claus Oxvig
{"title":"Generation and validation of a myoglobin knockout zebrafish model.","authors":"Rasmus Hejlesen, Kasper Kjær-Sørensen, Angela Fago, Claus Oxvig","doi":"10.1007/s11248-023-00369-3","DOIUrl":"10.1007/s11248-023-00369-3","url":null,"abstract":"<p><p>Previous studies using myoglobin (Mb) knockout mice and knockdown zebrafish have presented conflicting results about in vivo phenotypes resulting from the loss of this conserved and highly expressed protein, and therefore a new well-characterized knockout model is warranted. We here describe the generation of three distinct zebrafish mb knockout lines using the CRISPR/Cas system. None of the three lines exhibited any morphological phenotypes, changes in length, or lethality during embryonic and larval development. The adult homozygous knockout mb(Auzf13.2) zebrafish line were absent of Mb protein, had an almost complete degradation of mb mRNA, and showed no changes in viability, length, or heart size. Furthermore, transcriptomic analysis of adult heart tissue showed that mb knockout did not cause altered expression of other genes. Lastly, no off-targeting was observed in 36 screened loci. In conclusion, we have generated three mb knockout lines with indistinguishable phenotypes during embryonic and larval development and validated one of these lines, mb(Auzf13.2), to have no signs of genetic compensation or off-target effects in the adult heart. These findings suggests that the mb(Auzf13.2) shows promise as a candidate for investigating the biological role of Mb in zebrafish.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41238754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo CRISPR/LbCas12a-mediated knock-in and knock-out in Atlantic salmon (Salmo salar L.). 体内CRISPR/LbCas12a介导的大西洋鲑鱼(Salmo salar L.)的敲除和敲除。
IF 3 3区 生物学
Transgenic Research Pub Date : 2023-12-01 Epub Date: 2023-09-21 DOI: 10.1007/s11248-023-00368-4
Mari Raudstein, Erik Kjærner-Semb, Morten Barvik, Silje Broll, Anne Hege Straume, Rolf Brudvik Edvardsen
{"title":"In vivo CRISPR/LbCas12a-mediated knock-in and knock-out in Atlantic salmon (Salmo salar L.).","authors":"Mari Raudstein, Erik Kjærner-Semb, Morten Barvik, Silje Broll, Anne Hege Straume, Rolf Brudvik Edvardsen","doi":"10.1007/s11248-023-00368-4","DOIUrl":"10.1007/s11248-023-00368-4","url":null,"abstract":"<p><p>Genome editing using the CRISPR/Cas system offers the potential to enhance current breeding programs and introduce desirable genetic traits, including disease resistance, in salmon aquaculture. Several nucleases are available using this system, displaying differences regarding structure, cleavage, and PAM requirement. Cas9 is well established in Atlantic salmon, but Cas12a has yet to be tested in vivo in this species. In the present work, we microinjected salmon embryos with LbCas12a ribonucleoprotein complexes targeting the pigmentation gene solute carrier family 45 member 2 (slc45a2). Using CRISPR/LbCas12a, we were able to knock-out slc45a2 and knock-in a FLAG sequence element by providing single-stranded DNA templates. High-throughput sequencing revealed perfect HDR rates up to 34.3% and 54.9% in individual larvae using either target or non-target strand template design, respectively. In this work, we demonstrate the in vivo application of CRISPR/LbCas12a in Atlantic salmon, expanding the toolbox for editing the genome of this important aquaculture species.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41149489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering of insecticidal hybrid gene into potato chloroplast genome exhibits promising control of Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). 将杀虫杂交基因工程植入马铃薯叶绿体基因组,有望控制科罗拉多马铃薯甲虫(鞘翅目:蝶形目)。
IF 3 3区 生物学
Transgenic Research Pub Date : 2023-12-01 Epub Date: 2023-09-14 DOI: 10.1007/s11248-023-00366-6
Md Jakir Hossain, Allah Bakhsh, Faiz Ahmad Joyia, Emre Aksoy, Neslihan Zahide Özturk Gökçe, Muhammad Sarwar Khan
{"title":"Engineering of insecticidal hybrid gene into potato chloroplast genome exhibits promising control of Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae).","authors":"Md Jakir Hossain, Allah Bakhsh, Faiz Ahmad Joyia, Emre Aksoy, Neslihan Zahide Özturk Gökçe, Muhammad Sarwar Khan","doi":"10.1007/s11248-023-00366-6","DOIUrl":"10.1007/s11248-023-00366-6","url":null,"abstract":"<p><p>The potato chloroplast was transformed with codon optimized synthetic hybrid cry gene (SN19) to mitigate crop losses by Colorado potato beetle (CPB). The bombarded explants (leaves and internode) were cultured on MS medium supplemented with BAP (2.0 mg/l), NAA (0.2 mg/l), TDZ (2.0 mg/l) and GA3 (0.1 mg/l); spectinomycin 50 mg/l was used as a selection agent in the medium. Leaf explants of cultivar Kuroda induced highest percentage (92%) of callus where cultivar Santae produced the highest percentage (85.7%) of transplastomic shoots. Sante and Challenger showed 9.6% shoot regeneration efficiency followed by cultivar Simply Red (8.8%). PCR amplification yielded 16 postive transplastomic plantlets out of 21 spectinomycin resistant ones. Target gene integration was confirmed by PCR and Southern blot, whereas RT-qPCR was used to assess the expression level of transgene. The localization of visual marker gene gfp was tracked by laser scanning confocal microscopy which confirmed its expression in chloroplasts of leaf cells. The transplastomic plants ensured high mortality to both larvae and adult CPB. Foliage consumption and weight gain of CPB fed on transplastomic leaves were lower compared to the control plants. Sucessful implementation of current research findings can lead to a viable solution to CPB mediated potato losses globally.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10287338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knockout of M-LP/Mpv17L, a newly identified atypical PDE, induces physiological afferent cardiac hypertrophy in mice. 敲除M-LP/Mpv17L,一种新发现的非典型PDE,可诱导小鼠的生理性传入心脏肥大。
IF 3 3区 生物学
Transgenic Research Pub Date : 2023-12-01 Epub Date: 2023-10-18 DOI: 10.1007/s11248-023-00373-7
Reiko Iida, Misuzu Ueki, Toshihiro Yasuda
{"title":"Knockout of M-LP/Mpv17L, a newly identified atypical PDE, induces physiological afferent cardiac hypertrophy in mice.","authors":"Reiko Iida, Misuzu Ueki, Toshihiro Yasuda","doi":"10.1007/s11248-023-00373-7","DOIUrl":"10.1007/s11248-023-00373-7","url":null,"abstract":"<p><p>M-LP/Mpv17L (Mpv17-like protein) is an atypical cyclic nucleotide phosphodiesterase (PDE) without the molecular structure characteristic of the PDE family. Deficiency of M-LP/Mpv17L in mice has been found to result in development of β-cell hyperplasia and improved glucose tolerance. Here, we report another phenotype observed in M-LP/Mpv17L-knockout (KO) mice: afferent cardiac hypertrophy. Although the hearts of M-LP/Mpv17L-KO mice did not differ in size from those of wild-type mice, there was marked narrowing of the left ventricular lumen and thickening of the ventricular wall. The diameter and cross-sectional area of cardiomyocytes in 8-month-old M-LP/Mpv17L-KO mice were increased 1.16-fold and 1.35-fold, respectively, relative to control mice, but showed no obvious abnormalities of cell structure, fibrosis or impaired cardiac function. In 80-day-old KO mice, the expression of hypertrophic marker genes, brain natriuretic peptide (BNF), actin alpha cardiac muscle 1 (ACTC1) and actin alpha 1 skeletal muscle (ACTA1), as well as the Wnt/β-catenin pathway target genes, lymphoid enhancer-binding factor-1 (LEF1), axis inhibition protein 2 (AXIN2) and transcription factor 7 (TCF7), was significantly up-regulated relative to control mice, whereas fibrosis-related genes such as fibronectin 1 (FN1) and connective tissue growth factor (CTGF) were down-regulated. Western blot analysis revealed increased phosphorylation of molecules downstream of the cAMP/PKA signaling pathway, such as β-catenin, ryanodine receptor 2 (RyR2), phospholamban (PLN) and troponin I (cTnI), as well as members of the MEK1-ERK1/2 signaling pathway, which is strongly involved in afferent cardiac hypertrophy. Taken together, these findings indicate that M-LP/Mpv17L is one of the PDEs actively functioning in the heart and that deficiency of M-LP/Mpv17L in mice promotes physiological cardiac hypertrophy.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41238755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpressing plant ferredoxin-like protein enhances photosynthetic efficiency and carbohydrates accumulation in Phalaenopsis. 过表达植物铁氧还蛋白可提高蝴蝶兰的光合效率和碳水化合物积累。
IF 3 3区 生物学
Transgenic Research Pub Date : 2023-12-01 Epub Date: 2023-10-18 DOI: 10.1007/s11248-023-00370-w
Hsiang Chang, Yen-Ting Chen, Hsiang-En Huang, Mang-Jye Ger
{"title":"Overexpressing plant ferredoxin-like protein enhances photosynthetic efficiency and carbohydrates accumulation in Phalaenopsis.","authors":"Hsiang Chang, Yen-Ting Chen, Hsiang-En Huang, Mang-Jye Ger","doi":"10.1007/s11248-023-00370-w","DOIUrl":"10.1007/s11248-023-00370-w","url":null,"abstract":"<p><p>Crassulacean acid metabolism (CAM) is one of three major models of carbon dioxide assimilation pathway with better water-use efficiency and slower photosynthetic efficiency in photosynthesis. Previous studies indicated that the gene of sweet pepper plant ferredoxin-like protein (PFLP) shows high homology to the ferredoxin-1(Fd-1) family that belongs to photosynthetic type Fd and involves in photosystem I. It is speculated that overexpressing pflp in the transgenic plant may enhance photosynthetic efficiency through the electron transport chain (ETC). To reveal the function of PFLP in photosynthetic efficiency, pflp transgenic Phalaenopsis, a CAM plant, was generated to analyze photosynthetic markers. Transgenic plants exhibited 1.2-folds of electron transport rate than that of wild type (WT), and higher CO<sub>2</sub> assimilation rates up to 1.6 and 1.5-folds samples at 4 pm and 10 pm respectively. Enzyme activity of phosphoenolpyruvate carboxylase (PEPC) was increased to 5.9-folds in Phase III, and NAD<sup>+</sup>-linked malic enzyme (NAD<sup>+</sup>-ME) activity increased 1.4-folds in Phase IV in transgenic plants. The photosynthesis products were analyzed between transgenic plants and WT. Soluble sugars contents such as glucose, fructose, and sucrose were found to significantly increase to 1.2, 1.8, and 1.3-folds higher in transgenic plants. The starch grains were also accumulated up to 1.4-folds in transgenic plants than that of WT. These results indicated that overexpressing pflp in transgenic plants increases carbohydrates accumulation by enhancing electron transport flow during photosynthesis. This is the first evidence for the PFLP function in CAM plants. Taken altogether, we suggest that pflp is an applicable gene for agriculture application that enhances electron transport chain efficiency during photosynthesis.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41238756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Usefulness of current sgRNA design guidelines and in vitro cleavage assays for plant CRISPR/Cas genome editing: a case targeting the polyphenol oxidase gene family in eggplant (Solanum melongena L.). 当前sgRNA设计指南和体外切割试验在植物CRISPR/Cas基因组编辑中的用途:一个针对茄子多酚氧化酶基因家族的案例(茄属)。
IF 3 3区 生物学
Transgenic Research Pub Date : 2023-12-01 Epub Date: 2023-10-24 DOI: 10.1007/s11248-023-00371-9
Mark Gabriel S Sagarbarria, John Albert M Caraan, Angelo John G Layos
{"title":"Usefulness of current sgRNA design guidelines and in vitro cleavage assays for plant CRISPR/Cas genome editing: a case targeting the polyphenol oxidase gene family in eggplant (Solanum melongena L.).","authors":"Mark Gabriel S Sagarbarria, John Albert M Caraan, Angelo John G Layos","doi":"10.1007/s11248-023-00371-9","DOIUrl":"10.1007/s11248-023-00371-9","url":null,"abstract":"<p><p>The advent of genome editing platforms such as the CRISPR/Cas9 system ushers an unprecedented speed in the development of new crop varieties that can withstand the agricultural challenges of the 21st century. The CRISPR/Cas9 system depends on the specificity of engineered single guide RNAs (sgRNAs). However, sgRNA design in plants can be challenging due to the multitude of design tools to choose from, many of which use guidelines that are based on animal experiments yet allow the use of plant genomes. Upon choosing sgRNAs, it is also unclear whether an in vitro assay is needed to validate the targeting efficiency of a particular sgRNA before in vivo delivery of the CRISPR/Cas9 system. Here, we demonstrate the in vitro and in vivo activity of four different sgRNAs that we selected based on their ability to target multiple members of the eggplant polyphenol oxidase gene family. Some sgRNAs that have high in vitro cleavage activity did not produce edits in vivo, suggesting that an in vitro assay may not be a reliable basis to predict sgRNAs with highly efficient in vivo cleavage activity. Further analysis of our sgRNAs using other design algorithms suggest that plant-validated criteria such as the presence of necessary secondary structures and appropriate base-pairing may be the reason for the discrepancy between our observed in vitro and in vivo cleavage efficiencies. However, recent reports and our data suggests that there is no guaranteed way to ensure the in vivo cleavage of chosen sgRNAs.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49692550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstracts of the 18th Transgenic Technology Meeting (TT2023) : Houston, Texas, USA, November 12-15, 2023. 第18届转基因技术会议(TT2023)摘要:美国得克萨斯州休斯顿,2023年11月12日至15日。
IF 2.7 3区 生物学
Transgenic Research Pub Date : 2023-11-01 DOI: 10.1007/s11248-023-00372-8
{"title":"Abstracts of the 18th Transgenic Technology Meeting (TT2023) : Houston, Texas, USA, November 12-15, 2023.","authors":"","doi":"10.1007/s11248-023-00372-8","DOIUrl":"10.1007/s11248-023-00372-8","url":null,"abstract":"","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71427131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信