Toxicological ResearchPub Date : 2025-06-13eCollection Date: 2025-07-01DOI: 10.1007/s43188-025-00298-9
Xuan-Hung Nguyen, Jongman Yoo
{"title":"Current status and future prospects of toxicity assessment using organoids.","authors":"Xuan-Hung Nguyen, Jongman Yoo","doi":"10.1007/s43188-025-00298-9","DOIUrl":"10.1007/s43188-025-00298-9","url":null,"abstract":"<p><p>Organoids offer innovative platforms for toxicity assessment by more accurately recapitulating the structural and functional complexity of human tissues compared to traditional 2D cultures and animal models. This review summarizes current applications and discusses future directions for kidney, cardiac, liver, and brain organoids within the context of toxicology. Brain organoids, which recapitulate key features of human neural development, have facilitated investigations into neurotoxicity induced by agents such as Zika virus and chlorpyrifos. Kidney organoids, with nephron-like structures, have been employed to model nephrotoxicity induced by chemotherapeutic agents. Cardiac organoids, which mimic heart contractions and electrical properties, are effective for assessing cardiotoxicity from drugs such as doxorubicin. Liver organoids allow prediction of hepatotoxicity through the modeling of human-specific drug metabolism, as shown in studies using compounds like acetaminophen and troglitazone. Despite their promise, organoid systems still face challenges such as cellular immaturity, batch-to-batch variability, and limited vascularization. Emerging technologies such as 3D bioprinting, vascular integration, and multi-organ assembly are expected to improve the applicability of organoids in toxicity testing. Additionally, integration with microfluidic platforms and artificial intelligence-based analysis will improve high-throughput screening and predictive accuracy. As these technologies continue to evolve, organoids are poised to play a critical role in safer drug development, reducing dependence on animal models and providing deeper insights into systemic toxicity.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"41 4","pages":"325-333"},"PeriodicalIF":1.6,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxicological ResearchPub Date : 2025-05-06eCollection Date: 2025-07-01DOI: 10.1007/s43188-025-00292-1
Darlene Mae D Ortiz, Ngoc Minh-Hong Hoang, Handule Lee, Juyoung Park, Kwangsik Park
{"title":"Repeated dose toxicity of 4-methylbenzophenone: hepatotoxic and nephrotoxic effects in female Sprague-Dawley rats.","authors":"Darlene Mae D Ortiz, Ngoc Minh-Hong Hoang, Handule Lee, Juyoung Park, Kwangsik Park","doi":"10.1007/s43188-025-00292-1","DOIUrl":"10.1007/s43188-025-00292-1","url":null,"abstract":"<p><p>4-Methylbenzophenone (4-MBP), a derivative of benzophenone commonly utilized in consumer products, has elicited significant safety concerns due to its potential to migrate from food packaging materials and its structural similarity to known toxicants. This investigation sought to elucidate the toxicological profile of 4-MBP in female Sprague-Dawley rats following a 7-day repeated oral exposure to doses of 100, 200, and 400 mg/kg. The results demonstrated pronounced toxicity, as evidenced by high mortality, decreased body weight, clinical signs of weakness, and increased relative liver weights. Biochemical analysis revealed significant elevations in liver enzymes (AST, ALT, and GGT), lipid dysregulation, and increased glucose levels, which are indicative of hepatic dysfunction. Histopathological examination confirmed hepatocyte hypertrophy and mild renal tubular vacuolation, suggesting hepatotoxicity and nephrotoxicity, respectively. Hematological findings further revealed a decrease in white blood cell counts and alterations in immune cell populations, indicating a compromised immune function. Notably, no significant pulmonary lesions were observed, suggesting organ-specific toxicity. This study provides critical insights into the toxic effects of 4-MBP, identifies hepatotoxic and nephrotoxic risks, and highlights the need for further investigation in the field of regulatory toxicology. The present findings are crucial for determining safe exposure limits and contributing to the regulatory assessment of 4-MBP safety and public health risks.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"41 4","pages":"407-415"},"PeriodicalIF":1.6,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxicological ResearchPub Date : 2025-04-24eCollection Date: 2025-07-01DOI: 10.1007/s43188-025-00289-w
Yewon Kim, Hojin Kim, Yohan Kim
{"title":"Advancing hepatotoxicity assessment: current advances and future directions.","authors":"Yewon Kim, Hojin Kim, Yohan Kim","doi":"10.1007/s43188-025-00289-w","DOIUrl":"10.1007/s43188-025-00289-w","url":null,"abstract":"<p><p>During drug development, it is crucial to ensure that a drug exhibits effective activity in its target cells and organs. However, regardless of its effectiveness, a drug cannot be administered to patients if it exhibits toxicity in vivo. Based on pharmacokinetics, most drugs are cleared from the liver after entering the body, and only the remaining fraction reaches the target organ to exert therapeutic effects. Consequently, drugs with in vivo toxicity often manifest hepatotoxicity as an initial sign. This highlights the critical importance of hepatotoxicity assessment in drug development. Currently, hepatotoxicity assessments primarily rely on animal models and primary human hepatocytes. However, there are instances in which drugs pass these evaluations, are released to the market, and are later withdrawn because of unforeseen toxicity in patients. To enhance prediction accuracy, emerging hepatotoxicity models-including advanced 3D liver culture systems, in silico approaches such as AI-based models, and improved in vitro assays-are gaining significant attention. This review systematically compares conventional 2D models, animal models, organ-on-a-chip systems, and computational models, highlighting their advantages, limitations, and predictive reliability. By critically evaluating these methodologies, we propose future directions for refining hepatotoxicity assessment strategies, with an emphasis on enhancing translational relevance, reducing reliance on animal testing, and integrating AI-driven predictive models.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"41 4","pages":"303-323"},"PeriodicalIF":1.6,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxicological ResearchPub Date : 2025-04-08eCollection Date: 2025-07-01DOI: 10.1007/s43188-025-00290-3
Yoon Ji Choi, Da Song Back, Kwang Ho Jang, Mijeong Park, Jimin Ha, Youn Kyoung Jeong, Jin Seok Kang
{"title":"Evaluation of radiation-induced bone marrow toxicity using artificial intelligence-based image analysis in mice.","authors":"Yoon Ji Choi, Da Song Back, Kwang Ho Jang, Mijeong Park, Jimin Ha, Youn Kyoung Jeong, Jin Seok Kang","doi":"10.1007/s43188-025-00290-3","DOIUrl":"10.1007/s43188-025-00290-3","url":null,"abstract":"<p><p>Radiation exposure profoundly affects bone marrow, with even low-dose exposure inducing notable biological changes. Traditional pathology methods often face challenges in detecting subtle alterations. However, artificial intelligence (AI) offers enhanced sensitivity and precision, enabling a more detailed analysis. This study aimed to evaluate the effect of whole-body irradiation (WBI) on blood parameters, bone marrow density, and apoptosis in mice, employing AI-based image analysis for accurate and efficient quantification of cell density and apoptosis. Female C57BL/6 mice (n = 120) were divided into four groups: a control group (Group 1) and three irradiated groups (Groups 2, 3, and 4), exposed to 0.5 Gy, 1 Gy, and 2 Gy of WBI, respectively. Mice were sacrificed at 1, 3, and 7 days post-irradiation for analysis. Blood samples were assessed for hematological changes, and the sternum was histopathologically evaluated. Despite stable body weights, WBI significantly altered blood parameters, reducing white blood cell and red blood cell counts while increasing platelet counts. Histopathological examination revealed a marked reduction in bone marrow cellularity in Groups 3 and 4 on day 1 post-irradiation; however, cellularity appeared to recover in these groups by days 3 and 7. AI-based image analysis of the sternum provided precise quantification, confirming a significant decrease in bone marrow cellularity in Groups 3 and 4 compared to Group 1 on day 1 (<i>p</i> < 0.01). Apoptosis analysis also demonstrated a significant increase in the apoptotic index in Group 4 sternum samples on days 1, 3 (<i>p</i> < 0.01), and day 7 (<i>p</i> < 0.05) relative to Group 1. In summary, WBI induced hematological and histopathological alterations in mice, characterized by changes in blood cell parameters, bone marrow cellularity, and apoptosis. The integration of AI-based image analysis provides a robust and efficient tool for quantifying these changes, offering considerable potential for advancing radiation biology and pathology research.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"41 4","pages":"397-405"},"PeriodicalIF":1.6,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxicological ResearchPub Date : 2025-04-06eCollection Date: 2025-07-01DOI: 10.1007/s43188-025-00291-2
So Young Kim, Yung Hyun Choi
{"title":"Honokiol induces paraptosis-like cell death through mitochondrial ROS-dependent endoplasmic reticulum stress in hepatocellular carcinoma Hep3B cells.","authors":"So Young Kim, Yung Hyun Choi","doi":"10.1007/s43188-025-00291-2","DOIUrl":"10.1007/s43188-025-00291-2","url":null,"abstract":"<p><p>Honokiol, a lignan found in Magnolia plant species, exerts diverse pharmacological effects, and induces apoptosis in several cancer cell lines, including human hepatocellular carcinoma (HCC). The present study aimed to investigate whether it could induce paraptosis-like cell death, a type of non-canonical programmed cell death characterized by vacuolation and dysfunction of the mitochondria and endoplasmic reticulum (ER), in HCC Hep3B cells. Our results showed that honokiol significantly induced cytotoxicity and autophagy, both of which were associated with cytoplasmic vacuolation. Honokiol also enhanced ER stress, increased cellular calcium ion (Ca<sup>2+</sup>) levels, and caused mitochondrial dysfunction. Honokiol upregulated the expression of mitophagy regulators such as PTEN-induced kinase 1 and Parkin in the mitochondria, whereas the expression of apoptosis-linked gene 2-interacting protein X (Alix), involved in suppressing paraptosis, was downregulated. In addition, honokiol-induced cytotoxicity was accompanied by excessive generation of intracellular reactive oxygen species (ROS) and mitochondrial ROS (mtROS). However, the addition of Mito-TEMPO, a mitochondria-targeting antioxidant, neutralized the honokiol-induced increase in Ca<sup>2+</sup> levels and changes in autophagy, ER stress, and mitophagy regulatory protein expression, thereby counteracting ER stress. Moreover, Mito-TEMPO pretreatment significantly improved honokiol-induced mitochondrial impairment, cytotoxicity, and Alix expression. Collectively, our findings demonstrate that honokiol-induced oxidative stress in HCC Hep3B cells critically contributes to subsequent paraptotic events such as ER stress and mitochondrial damage, highlighting the potential of honokiol as a therapeutic agent for liver cancer treatment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43188-025-00291-2.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"41 4","pages":"385-396"},"PeriodicalIF":1.6,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxicological ResearchPub Date : 2025-04-03eCollection Date: 2025-07-01DOI: 10.1007/s43188-025-00288-x
Hyeon-Young Kim, Tae-Rim Kim, Sung-Hwan Kim, In-Hyeon Kim, Woong-Il Kim, Jun-Hong Park, Youngho Ko, Sungil Yun, Han-Oh Park, Jong-Choon Kim
{"title":"Systemic toxicity and toxicokinetics study of self-assembled-micelle inhibitory RNA-targeting amphiregulin in cynomolgus monkeys following intravenous injection.","authors":"Hyeon-Young Kim, Tae-Rim Kim, Sung-Hwan Kim, In-Hyeon Kim, Woong-Il Kim, Jun-Hong Park, Youngho Ko, Sungil Yun, Han-Oh Park, Jong-Choon Kim","doi":"10.1007/s43188-025-00288-x","DOIUrl":"10.1007/s43188-025-00288-x","url":null,"abstract":"<p><p>Self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG) is a novel RNA interference-based nanoparticle for treating fibrotic diseases. The present non-clinical study investigated the potential 4-week repeated intravenous dose toxicity and toxicokinetics of SAMiRNA-AREG at dose levels of 0, 25, 50, and 100 mg/kg/day in cynomolgus monkeys. During the test period, mortality, clinical observation, body and organ weights, food consumption, ophthalmology, electrocardiography, hematology, serum chemistry, urinalysis, and gross and microscopic pathology were examined. Serum samples were collected at various time points (0, 0.1, 0.5, 1, 3, 6, 10, 24, and 48 h) after dosing on days 1 and 29 for toxicokinetic analysis. The repeated intravenous dose toxicity study revealed no treatment-related significant changes or serious toxicity compared to the vehicle control group. SAMiRNA-AREG exhibited a non-linear toxicokinetic profile, with the t<sub>1/2</sub> value ranging from 2.97 to 5.88 h in single dosing and from 2.44 to 4.01 h in repeated dosing. In conclusion, the no-observed-adverse-effect level for SAMiRNA-AREG was considered to be ≥ 100 mg/kg/day with C<sub>max</sub> and AUC<sub>last</sub> values of 650,181.0-764,279.7 μg/mL and 539,728.0-606,033.5 h ng/mL, respectively, on day 29, and no target organs were identified.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"41 4","pages":"369-384"},"PeriodicalIF":1.6,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214235/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxicological ResearchPub Date : 2025-03-20eCollection Date: 2025-07-01DOI: 10.1007/s43188-025-00286-z
Safdar Khan, Mohammad Attaullah, Sarwat Jahan, Rahmat Ali, Shakil Ahmad
{"title":"Sodium benzoate exposure from juvenile to peripubertal period disrupts HPG-axis in both male and female rats.","authors":"Safdar Khan, Mohammad Attaullah, Sarwat Jahan, Rahmat Ali, Shakil Ahmad","doi":"10.1007/s43188-025-00286-z","DOIUrl":"10.1007/s43188-025-00286-z","url":null,"abstract":"<p><p>Sodium benzoate (SB) is a synthetic preservative that is widely used in the food and pharmaceutical industries. Despite its antibacterial and fungal static properties, it can impair reproduction. However, its toxicity has not been fully studied during the sensitive developmental period in mammals. This study was aimed at examining the adverse effects of SB during the developmental period, particularly the HPG-axis. Thirty male and 30 female weanling rats (PND 21) were administered oral doses of SB (10-1000 mg/kg/BW) until the peripubertal period, whereas control animals were administered only distilled water. Body weight, reproductive organ weight, oxidants, antioxidants, and reproductive hormones were measured. Kisspeptin (hypothalamic peptide) regulates the HPG-axis by activating GnRH secretion and was assessed by immunohistochemistry using specific primary and secondary antibodies. Morphometric and histopathological analyses were performed on hematoxylin- and eosin-stained sections to assess reproductive organ damage. The experimental groups showed a significant reduction in body as well as reproductive organ weight. Higher reactive oxygen species (ROS) and TBARS levels were observed, accompanied by reduced antioxidant enzyme activities, such as SOD, POD, CAT, and GSH in the treatment groups. Furthermore, a hormonal analysis revealed a dose-dependent decrease in estradiol, testosterone, and FSH levels, whereas an increase in LH was noted in animals that were administered SB. A dose-dependent decrease in kisspeptin expression was observed in male and female treatment groups. Morphometric analysis revealed a significant decrease in the ovarian and testicular volumes. In addition, apparent cytoarchitectural alterations in both the testis and ovary were noticed, signifying profound structural damage to the gonadal tissue because of SB exposure. Our findings suggest that developmental exposure to SB causes serious structural and molecular changes in the HPG axis. These abnormalities over the critical developmental window may lead to disruption in the maturation of the reproductive system, which could be attributed to compromised reproductive health in adults.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43188-025-00286-z.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"41 4","pages":"351-368"},"PeriodicalIF":1.6,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxicological ResearchPub Date : 2025-03-11eCollection Date: 2025-07-01DOI: 10.1007/s43188-025-00285-0
Mei Jing Piao, Kyoung Ah Kang, Pincha Devage Sameera Madushan Fernando, Herath Mudiyanselage Udari Lakmini Herath, Herath Mudiyanselage Maheshika Madhuwanthi Senavirathna, Hee Kyoung Kang, Jin Won Hyun
{"title":"Anti-senescence and anti-apoptotic effects of immature <i>Citrus unshiu</i> peel ethanol extract on ultraviolet B-irradiated skin keratinocytes.","authors":"Mei Jing Piao, Kyoung Ah Kang, Pincha Devage Sameera Madushan Fernando, Herath Mudiyanselage Udari Lakmini Herath, Herath Mudiyanselage Maheshika Madhuwanthi Senavirathna, Hee Kyoung Kang, Jin Won Hyun","doi":"10.1007/s43188-025-00285-0","DOIUrl":"10.1007/s43188-025-00285-0","url":null,"abstract":"<p><p>Immature <i>Citrus unshiu</i> peel has garnered attention due to its potent antioxidant effects. In this study, we aimed to investigate the protective effects of immature citrus peel extract (ICPEE) against ultraviolet B (UVB) irradiation-induced senescence and apoptosis in human keratinocytes (HaCaT). Cells were pretreated with ICPEE for 1 h and exposed to UVB. For cell senescence and apoptosis measurements, UVB was applied three times at 10 mJ/cm<sup>2</sup> every 6 h and once at 30 mJ/cm<sup>2</sup>, respectively. ICPEE alleviated reduced cell viability and increased reactive oxygen species (ROS) levels induced by UVB irradiation. UVB-induced increases in intracellular calcium levels, senescence-associated β-gal activity, and G<sub>1</sub> phase arrest were also restored by ICPEE. Furthermore, ICPEE reverted the UVB-induced changes in the expression of cyclin D1, CDK4, cyclin E, CDK2, matrix metalloproteinases (MMP-1, MMP-2, and MMP-9), tissue inhibitor of metalloproteinases-1, and apoptosis-related proteins. The caspase inhibitor Z-VAD-FMK significantly restored UVB-impaired cell viability, comparable to ICPEE, suggesting the anti-apoptotic activities of ICPEE. Additionally, cell viability and apoptotic body measurement using SP600125, a JNK inhibitor, showed that ICPEE reduced UVB-induced expression of JNK and upstream factor SEK protein. ICPEE exhibited inherent UVB absorption capability. The findings of this study suggest that ICPEE is an effective natural material for protecting against skin aging owing to its strong photoaging and apoptosis inhibitory properties.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"41 4","pages":"335-349"},"PeriodicalIF":1.6,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulatory frameworks for fragrance safety in cosmetics: a global overview.","authors":"Priyanka Rana, Diksha Pathania, Prakriti Gaur, Sunil Kumar Patel, Medha Bajpai, Neera Tewari Singh, Ruchi Pandey, Shakti Vinay Shukla, Aditya Bhushan Pant, Ratan Singh Ray, Ashish Dwivedi","doi":"10.1007/s43188-025-00283-2","DOIUrl":"10.1007/s43188-025-00283-2","url":null,"abstract":"<p><p>Fragrances play a crucial role in cosmetic products, influencing consumer preferences and enriching sensory experiences. However, making sure these products are safe, especially concerning natural and synthetic fragrances, requires robust regulatory frameworks. This review offers a global perspective on the regulatory systems governing the safety of fragrances. It begins by examining the fundamental differences between natural and synthetic fragrances, highlighting their origins and unique safety considerations. Natural fragrances, sourced from botanicals like essential oils, have a long history of human exposure. Synthetic fragrances, on the other hand, are artificially manufactured compounds that often lack sufficient safety data, thereby requiring strict regulation. Various countries have developed safety guidelines to address concerns such as skin sensitization, allergies, and health risks associated with fragrance use. This article provides a comprehensive analysis of these global regulatory frameworks, emphasizing both commonalities and disparities in safety standards for natural and synthetic fragrances. It also discusses ongoing efforts to harmonize regulations and improve fragrance safety in cosmetics. By offering this in-depth overview of regulatory approaches, the article serves as a valuable resource for cosmetics industry professionals. It provides insights into the evolving landscape of cosmetics regulations worldwide, aiding stakeholders in navigating the complexities of natural and synthetic fragrance safety and ultimately safeguarding consumer well-being.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"41 3","pages":"199-220"},"PeriodicalIF":1.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144038164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxicological ResearchPub Date : 2025-02-27eCollection Date: 2025-05-01DOI: 10.1007/s43188-025-00282-3
Carlos Jara Bravo, José Antonio Cernuda Martínez, Pedro Arcos González
{"title":"Short-term health effects of tear agents chlorobenzylidenemalononitrile and oleoresin capsicum during the civil riots of Santiago de Chile in 2019-2020.","authors":"Carlos Jara Bravo, José Antonio Cernuda Martínez, Pedro Arcos González","doi":"10.1007/s43188-025-00282-3","DOIUrl":"https://doi.org/10.1007/s43188-025-00282-3","url":null,"abstract":"<p><p>Chlorobenzylidenemalononitrile (CS) and Oleoresin Capsicum (OC) were tear gasses used as anti-riot control agents during social unrest riots in Chile (October 2019-March 2020). This study posed as a research question what were the short-term health effects of CS and OC and their patterns of temporal occurrence in a sample of inhabitants and health care volunteer brigades of the Plaza Italia (city of Santiago, Chile) during the riots. A retrospective cross-sectional study was conducted in 112 exposed people (inhabitants and health care volunteers) affected by CS and OC. 62 harmful effects were studied classified in three time periods of occurrence: immediate effects (between exposure and one hour), secondary effects (from one hour after exposure and up to 24 h), and subsequent effects (days after exposure). The use of CS and OC in Santiago riots 2019-2020 produced harmful effects on both groups: inhabitants and brigade health care volunteers. The frequency of effects was, from most to least common: 62.5% eye pain or burning, 56.2% throat irritation, 54.4% respiratory distress, 52.6% skin pain or burning, 51.7% impaired vision, 37.5% skin erythema, 31.2% headache, 31.2% irregular breathing, 25.8% conjunctival injection, 29.4% nausea, 27.6% disorientation, 26.7 high blood pressure, 25.8% lip pain, 24.1% rhinitis, 24.1% skin sensitivity, 22.3% diarrhea, 20.5% contact dermatitis, 18.7% conjunctivitis, 16.9% skin vesicles, 16% tachycardia, 14.4 cough with phlegm and 9.8% corneal abrasion. 22 effects were more frequent (<i>p</i> < 0.05) in health care volunteers than among residents. High blood pressure was more frequent (<i>p</i> < 0.05) among residents. Immediate most frequent effects were pain or burning, impaired vision, respiratory difficulty, irregular breathing, skin pain and burning, skin erythema, nausea, tachycardia, and hypertension. Secondary effects were diarrhea, skin vesicles, and eye pain or burning. Subsequent most frequent effects among healthcare personnel were conjunctivitis, skin pain, burning, rhinitis, and diarrhea. Among residents, the most common effects were skin pain, burning, and impaired vision.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"41 3","pages":"291-301"},"PeriodicalIF":1.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12022201/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144027647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}