Systemic toxicity and toxicokinetics study of self-assembled-micelle inhibitory RNA-targeting amphiregulin in cynomolgus monkeys following intravenous injection.
Hyeon-Young Kim, Tae-Rim Kim, Sung-Hwan Kim, In-Hyeon Kim, Woong-Il Kim, Jun-Hong Park, Youngho Ko, Sungil Yun, Han-Oh Park, Jong-Choon Kim
{"title":"Systemic toxicity and toxicokinetics study of self-assembled-micelle inhibitory RNA-targeting amphiregulin in cynomolgus monkeys following intravenous injection.","authors":"Hyeon-Young Kim, Tae-Rim Kim, Sung-Hwan Kim, In-Hyeon Kim, Woong-Il Kim, Jun-Hong Park, Youngho Ko, Sungil Yun, Han-Oh Park, Jong-Choon Kim","doi":"10.1007/s43188-025-00288-x","DOIUrl":null,"url":null,"abstract":"<p><p>Self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG) is a novel RNA interference-based nanoparticle for treating fibrotic diseases. The present non-clinical study investigated the potential 4-week repeated intravenous dose toxicity and toxicokinetics of SAMiRNA-AREG at dose levels of 0, 25, 50, and 100 mg/kg/day in cynomolgus monkeys. During the test period, mortality, clinical observation, body and organ weights, food consumption, ophthalmology, electrocardiography, hematology, serum chemistry, urinalysis, and gross and microscopic pathology were examined. Serum samples were collected at various time points (0, 0.1, 0.5, 1, 3, 6, 10, 24, and 48 h) after dosing on days 1 and 29 for toxicokinetic analysis. The repeated intravenous dose toxicity study revealed no treatment-related significant changes or serious toxicity compared to the vehicle control group. SAMiRNA-AREG exhibited a non-linear toxicokinetic profile, with the t<sub>1/2</sub> value ranging from 2.97 to 5.88 h in single dosing and from 2.44 to 4.01 h in repeated dosing. In conclusion, the no-observed-adverse-effect level for SAMiRNA-AREG was considered to be ≥ 100 mg/kg/day with C<sub>max</sub> and AUC<sub>last</sub> values of 650,181.0-764,279.7 μg/mL and 539,728.0-606,033.5 h ng/mL, respectively, on day 29, and no target organs were identified.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"41 4","pages":"369-384"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43188-025-00288-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG) is a novel RNA interference-based nanoparticle for treating fibrotic diseases. The present non-clinical study investigated the potential 4-week repeated intravenous dose toxicity and toxicokinetics of SAMiRNA-AREG at dose levels of 0, 25, 50, and 100 mg/kg/day in cynomolgus monkeys. During the test period, mortality, clinical observation, body and organ weights, food consumption, ophthalmology, electrocardiography, hematology, serum chemistry, urinalysis, and gross and microscopic pathology were examined. Serum samples were collected at various time points (0, 0.1, 0.5, 1, 3, 6, 10, 24, and 48 h) after dosing on days 1 and 29 for toxicokinetic analysis. The repeated intravenous dose toxicity study revealed no treatment-related significant changes or serious toxicity compared to the vehicle control group. SAMiRNA-AREG exhibited a non-linear toxicokinetic profile, with the t1/2 value ranging from 2.97 to 5.88 h in single dosing and from 2.44 to 4.01 h in repeated dosing. In conclusion, the no-observed-adverse-effect level for SAMiRNA-AREG was considered to be ≥ 100 mg/kg/day with Cmax and AUClast values of 650,181.0-764,279.7 μg/mL and 539,728.0-606,033.5 h ng/mL, respectively, on day 29, and no target organs were identified.
期刊介绍:
Toxicological Research is the official journal of the Korean Society of Toxicology. The journal covers all areas of Toxicological Research of chemicals, drugs and environmental agents affecting human and animals, which in turn impact public health. The journal’s mission is to disseminate scientific and technical information on diverse areas of toxicological research. Contributions by toxicologists, molecular biologists, geneticists, biochemists, pharmacologists, clinical researchers and epidemiologists with a global view on public health through toxicological research are welcome. Emphasis will be given to articles providing an understanding of the toxicological mechanisms affecting animal, human and public health. In the case of research articles using natural extracts, detailed information with respect to the origin, extraction method, chemical profiles, and characterization of standard compounds to ensure the reproducible pharmacological activity should be provided.