{"title":"Introductory Chapter: Nonlinear Optical Phenomena","authors":"B. Lembrikov","doi":"10.5772/INTECHOPEN.83718","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.83718","url":null,"abstract":"The number of publications concerning different aspects of nonlinear optics is enormous and hardly observable. We briefly discuss in this chapter the fundamental nonlinear optical phenomena and methods of their analysis. Nonlinear optics is related to the analysis of the nonlinear interaction between light and matter when the light-induced changes of the medium optical properties occur [1, 2]. The nonlinear optical effects are weak, and their observation became possible only after the invention of lasers which provide a highly coherent and intense radiation [2]. A typical nonlinear optical process consists of two stages. First, the intense coherent light induces a nonlinear response of the medium, and then the modified medium influences the optical radiation in a nonlinear way [1]. The nonlinear medium is described by a system of the dynamic equations including the optical field. The optical field itself is described by Maxwell’s equations including the nonlinear polarization of the medium [1, 2]. All media are essentially nonlinear; however, the nonlinear coupling coefficients are usually very small and can be enhanced by the sufficiently strong optical radiation [1, 2]. For this reason, to a first approximation, light and matter can be considered as a system of uncoupled oscillators, and the nonlinear terms are some orders of magnitude smaller than the linear ones [2]. Nevertheless, the nonlinear effects can be important in the long-time and longdistance limits [2]. Generally, the light can be considered as a superposition of plane","PeriodicalId":231551,"journal":{"name":"Nonlinear Optics - Novel Results in Theory and Applications","volume":"985 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124603799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydrodynamic Methods and Exact Solutions in Application to the Electromagnetic Field Theory in Medium","authors":"Sergey G. Chefranov, Artem S. Chefranov","doi":"10.5772/INTECHOPEN.80813","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80813","url":null,"abstract":"The new Vavilov-Cherenkov radiation theory which is based on the relativistic generalization of the Landau theory for superfluid threshold velocity and Abraham theory of the electromagnetic field (EMF) in medium is represented. The new exact solution of the Cauchy problem in unbounded space is obtained for the n-dimensional Euler-Helmholtz (EH) equation in the case of a nonzero-divergence velocity field for an ideal compressible medium. The solution obtained describes the inertial vortex motion and coincides with the exact solution to the n-dimensional Hopf equation which simulates turbulence without pressure. Due to the introduction of a fairly large external friction or by introducing an arbitrary small effective volume viscosity, a new analytic solution of the Cauchy problem for the three-dimensional Navier-Stokes (NS) equation is obtained for compressible flows. This gives the positive solution to the Clay problem (www.clamath.org) generalization on the compressible NS equation. This solution also gives the possibility to obtain a new class of regular solutions to the n-dimensional modification of the Kuramoto-Sivashinsky equation, which is ordinarily used for the description of the nonlinear propagation of fronts in active media. The example for potential application of the new exact solution to the Hopf equation is considered in the connection of nonlinear geometrical optics with weak nonlinear medium at the nonlocality of the small action radii.","PeriodicalId":231551,"journal":{"name":"Nonlinear Optics - Novel Results in Theory and Applications","volume":"SE-13 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121007361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear Schrödinger Equation","authors":"Jing Huang","doi":"10.5772/INTECHOPEN.81093","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81093","url":null,"abstract":"Firstly, based on the small-signal analysis theory, the nonlinear Schrodinger equation (NLSE) with fiber loss is solved. It is also adapted to the NLSE with the high-order dispersion terms. Furthermore, a general theory on cross-phase modulation (XPM) intensity fluctuation which adapted to all kinds of modulation formats (continuous wave, non-return-to-zero wave, and return-zero pulse wave) is presented. Secondly, by the Green function method, the NLSE is directly solved in the time domain. It does not bring any spurious effect compared with the split-step method in which the step size has to be carefully controlled. Additionally, the fourth-order dispersion coefficient of fibers can be estimated by the Green function solution of NLSE. The fourth-order dispersion coefficient varies with distance slightly and is about 0.002 ps/km, 0.003 ps/nm, and 0.00032 ps/nm for SMF, NZDSF, and DCF, respectively. In the zero-dispersion regime, the higher-order nonlinear effect (higher than self-steepening) has a strong impact on the short pulse shape, but this effect degrades rapidly with the increase of β2. Finally, based on the traveling wave solution of NLSE for ASE noise, the probability density function of ASE by solving the Fokker-Planck equation including the dispersion effect is presented.","PeriodicalId":231551,"journal":{"name":"Nonlinear Optics - Novel Results in Theory and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115432423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stimulated Raman Scattering in Micro- and Nanophotonics","authors":"M. Ferrara, L. Sirleto","doi":"10.5772/INTECHOPEN.80814","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80814","url":null,"abstract":"Microand nanophotonics explore behavior of light on the micro-/nanoscale and the interaction of micro-/nanoobjects with light. The driving force for their development is the aim to go beyond the limit of photonics. Because of the diffraction limit, photonics components are not able to confine light to the microscale or nanoscale dimension; therefore, one of the key challenges for microand nanophotonics is a reduction in the size of integrated optical devices, while maintaining a high level of performance. As far as light amplifiers and laser sources based on stimulated Raman scattering (SRS) are concerned, important accomplishments have been achieved in the fields of fiber optics amplification and integrated photonics devices. In this chapter, the most interesting investigations in the field of stimulated Raman scattering in microand nanophotonics are reviewed. These findings provide promising perspectives for integrated micro-/ nano-Raman lasers.","PeriodicalId":231551,"journal":{"name":"Nonlinear Optics - Novel Results in Theory and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116764422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards Enhancing the Efficiency of Nonlinear Optical Generation","authors":"J. Nilaya, D. Biswas","doi":"10.5772/INTECHOPEN.80816","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80816","url":null,"abstract":"The chapter dwells on two novel approaches towards enhancing the efficiency of nonlinear optical generation. The former is to enable the unabsorbed pump beam to pass through the crystal repeatedly. Integration of an unstable cavity containing the crystal with the stable pump cavity made this possible. The Q of the unstable cavity could be maintained high as the output coupler of the pump laser, itself served as the entrance mirror of this cavity. The unstable nature of the cavity kept the crystal from being exposed to high flux while ensuring longer interaction length. Although this scheme demonstrated in mid-IR region its advantage should persist across UV, visible, and near-IR regions too. The enhancement of conversion efficiency is effected in the second scheme by way of illuminating the crystal with alternate high and low regions of intensity along its length as against the uniform illumination case maintaining the same average intensity as in the conventional operation. The advantage is attributed to the square dependence of the second harmonic on the intensity of the pump. A simple modification of the existing experimental setup involving integration of an additional optical element with the pump cavity allowed exploitation of interference effect to realise such a non-uniform illumination condition.","PeriodicalId":231551,"journal":{"name":"Nonlinear Optics - Novel Results in Theory and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131044583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three Solutions to the Nonlinear Schrödinger Equation for a Constant Potential","authors":"G. T. Vega","doi":"10.5772/INTECHOPEN.80938","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80938","url":null,"abstract":"We introduce three sets of solutions to the nonlinear Schrödinger equation for the free particle case. A well-known solution is written in terms of Jacobi elliptic functions, which are the nonlinear versions of the trigonometric functions sin, cos, tan, cot, sec, and csc. The nonlinear versions of the other related functions like the real and complex exponential functions and the linear combinations of them is the subject of this chapter. We also illustrate the use of these functions in Quantum Mechanics as well as in nonlinear optics.","PeriodicalId":231551,"journal":{"name":"Nonlinear Optics - Novel Results in Theory and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127414867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ariel Flores Rosas, Orlando Díaz Hernández, Roberto Arceo, Gerardo J. Escalera Santos, Sergio Mendoza Vázquez, Elizeth Ramírez Álvarez, Christian I. Enriquez Flores, E. Kuzin
{"title":"Polarization Properties of the Solitons Generated in the Process of Pulse Breakup in Twisted Fiber Pumped by ns Pulses","authors":"Ariel Flores Rosas, Orlando Díaz Hernández, Roberto Arceo, Gerardo J. Escalera Santos, Sergio Mendoza Vázquez, Elizeth Ramírez Álvarez, Christian I. Enriquez Flores, E. Kuzin","doi":"10.5772/INTECHOPEN.81574","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81574","url":null,"abstract":"Common optical fibers are randomly birefringent, and solitons formatting and traveling in them are randomly polarized. However, it is desirable to have solitons with a well-defined polarization. With pump relatively long pulses, the nonlinear effects of modulation instability (MI) and stimulated Raman scattering (SRS) are dominant at the initial stage of the process of supercontinuum (SC) generation; modulation instability results in pulse breakup and formation of short pulses that evolve finally to a bunch of solitons and dispersive waves. We do the research of the polarization of solitons formed by the pulse breakup process by the effect of modulation instability with pump pulses of nanoseconds in standard fiber (SMF-28) with circular birefringence introduced by fiber twist, and the twisted fiber mitigates the random linear birefringence. In this work, we found that polarization ellipticity of solitons is distributed randomly; nevertheless, the average polarization ellipticity is closer to the circular than the polarization ellipticity of the input pulse. In the experimental setup. 200 m of SMF-28 fiber twisted by 6 turns/m was used. We used 1 ns pulse to pump the fiber. The results showed that at circular polarization of the input pulse solitons at the fiber output have polarizations close to the circular, while in the fiber without twist, the soliton polarization was random.","PeriodicalId":231551,"journal":{"name":"Nonlinear Optics - Novel Results in Theory and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129668917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Widely Tunable Quantum-Well Laser: OPO Diode Around 2 μm Based on a Coupled Waveguide Heterostructure","authors":"A. Bernard, J. Gerard, I. Favero, G. Leo","doi":"10.5772/INTECHOPEN.80517","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80517","url":null,"abstract":"We present the design of a widely tunable monolithic source on GaAs/AlGaAs. It consists of a quantum-well distributed feedback (DFB) laser vertically coupled with a waveguide engineered for nonlinear frequency conversion. No regrowth or alignment is necessary, and all the structure stems from a single epitaxy step. Light is emitted by the 0.98 μm DFB laser and transmitted to the underlying waveguide by an adiabatic taper, where it can undergo parametric down-conversion, providing signal and idler beams around 2 μm. Transfer rates and tolerances for transfer and conversion efficiency are calculated to be compatible with the tolerances of current fabrication processes. We estimate that an OPO threshold can be reached in the underlying waveguide for a laser emitted power of 20–100 mW, if high-reflectivity distributed Bragg reflectors (DBRs) are used.","PeriodicalId":231551,"journal":{"name":"Nonlinear Optics - Novel Results in Theory and Applications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129723749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}