Three Solutions to the Nonlinear Schrödinger Equation for a Constant Potential

G. T. Vega
{"title":"Three Solutions to the Nonlinear Schrödinger Equation for a Constant Potential","authors":"G. T. Vega","doi":"10.5772/INTECHOPEN.80938","DOIUrl":null,"url":null,"abstract":"We introduce three sets of solutions to the nonlinear Schrödinger equation for the free particle case. A well-known solution is written in terms of Jacobi elliptic functions, which are the nonlinear versions of the trigonometric functions sin, cos, tan, cot, sec, and csc. The nonlinear versions of the other related functions like the real and complex exponential functions and the linear combinations of them is the subject of this chapter. We also illustrate the use of these functions in Quantum Mechanics as well as in nonlinear optics.","PeriodicalId":231551,"journal":{"name":"Nonlinear Optics - Novel Results in Theory and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Optics - Novel Results in Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce three sets of solutions to the nonlinear Schrödinger equation for the free particle case. A well-known solution is written in terms of Jacobi elliptic functions, which are the nonlinear versions of the trigonometric functions sin, cos, tan, cot, sec, and csc. The nonlinear versions of the other related functions like the real and complex exponential functions and the linear combinations of them is the subject of this chapter. We also illustrate the use of these functions in Quantum Mechanics as well as in nonlinear optics.
恒电位非线性Schrödinger方程的三个解
我们介绍了自由粒子情况下的非线性Schrödinger方程的三组解。一个众所周知的解是用雅可比椭圆函数来表示的,雅可比椭圆函数是三角函数sin, cos, tan, cot, sec和csc的非线性形式。其他相关函数的非线性版本,如实指数函数和复指数函数以及它们的线性组合是本章的主题。我们还举例说明了这些函数在量子力学和非线性光学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信