{"title":"宽可调谐量子阱激光器:基于耦合波导异质结构的2 μm左右OPO二极管","authors":"A. Bernard, J. Gerard, I. Favero, G. Leo","doi":"10.5772/INTECHOPEN.80517","DOIUrl":null,"url":null,"abstract":"We present the design of a widely tunable monolithic source on GaAs/AlGaAs. It consists of a quantum-well distributed feedback (DFB) laser vertically coupled with a waveguide engineered for nonlinear frequency conversion. No regrowth or alignment is necessary, and all the structure stems from a single epitaxy step. Light is emitted by the 0.98 μm DFB laser and transmitted to the underlying waveguide by an adiabatic taper, where it can undergo parametric down-conversion, providing signal and idler beams around 2 μm. Transfer rates and tolerances for transfer and conversion efficiency are calculated to be compatible with the tolerances of current fabrication processes. We estimate that an OPO threshold can be reached in the underlying waveguide for a laser emitted power of 20–100 mW, if high-reflectivity distributed Bragg reflectors (DBRs) are used.","PeriodicalId":231551,"journal":{"name":"Nonlinear Optics - Novel Results in Theory and Applications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Widely Tunable Quantum-Well Laser: OPO Diode Around 2 μm Based on a Coupled Waveguide Heterostructure\",\"authors\":\"A. Bernard, J. Gerard, I. Favero, G. Leo\",\"doi\":\"10.5772/INTECHOPEN.80517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the design of a widely tunable monolithic source on GaAs/AlGaAs. It consists of a quantum-well distributed feedback (DFB) laser vertically coupled with a waveguide engineered for nonlinear frequency conversion. No regrowth or alignment is necessary, and all the structure stems from a single epitaxy step. Light is emitted by the 0.98 μm DFB laser and transmitted to the underlying waveguide by an adiabatic taper, where it can undergo parametric down-conversion, providing signal and idler beams around 2 μm. Transfer rates and tolerances for transfer and conversion efficiency are calculated to be compatible with the tolerances of current fabrication processes. We estimate that an OPO threshold can be reached in the underlying waveguide for a laser emitted power of 20–100 mW, if high-reflectivity distributed Bragg reflectors (DBRs) are used.\",\"PeriodicalId\":231551,\"journal\":{\"name\":\"Nonlinear Optics - Novel Results in Theory and Applications\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Optics - Novel Results in Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.80517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Optics - Novel Results in Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Widely Tunable Quantum-Well Laser: OPO Diode Around 2 μm Based on a Coupled Waveguide Heterostructure
We present the design of a widely tunable monolithic source on GaAs/AlGaAs. It consists of a quantum-well distributed feedback (DFB) laser vertically coupled with a waveguide engineered for nonlinear frequency conversion. No regrowth or alignment is necessary, and all the structure stems from a single epitaxy step. Light is emitted by the 0.98 μm DFB laser and transmitted to the underlying waveguide by an adiabatic taper, where it can undergo parametric down-conversion, providing signal and idler beams around 2 μm. Transfer rates and tolerances for transfer and conversion efficiency are calculated to be compatible with the tolerances of current fabrication processes. We estimate that an OPO threshold can be reached in the underlying waveguide for a laser emitted power of 20–100 mW, if high-reflectivity distributed Bragg reflectors (DBRs) are used.