Introductory Chapter: Nonlinear Optical Phenomena

B. Lembrikov
{"title":"Introductory Chapter: Nonlinear Optical Phenomena","authors":"B. Lembrikov","doi":"10.5772/INTECHOPEN.83718","DOIUrl":null,"url":null,"abstract":"The number of publications concerning different aspects of nonlinear optics is enormous and hardly observable. We briefly discuss in this chapter the fundamental nonlinear optical phenomena and methods of their analysis. Nonlinear optics is related to the analysis of the nonlinear interaction between light and matter when the light-induced changes of the medium optical properties occur [1, 2]. The nonlinear optical effects are weak, and their observation became possible only after the invention of lasers which provide a highly coherent and intense radiation [2]. A typical nonlinear optical process consists of two stages. First, the intense coherent light induces a nonlinear response of the medium, and then the modified medium influences the optical radiation in a nonlinear way [1]. The nonlinear medium is described by a system of the dynamic equations including the optical field. The optical field itself is described by Maxwell’s equations including the nonlinear polarization of the medium [1, 2]. All media are essentially nonlinear; however, the nonlinear coupling coefficients are usually very small and can be enhanced by the sufficiently strong optical radiation [1, 2]. For this reason, to a first approximation, light and matter can be considered as a system of uncoupled oscillators, and the nonlinear terms are some orders of magnitude smaller than the linear ones [2]. Nevertheless, the nonlinear effects can be important in the long-time and longdistance limits [2]. Generally, the light can be considered as a superposition of plane","PeriodicalId":231551,"journal":{"name":"Nonlinear Optics - Novel Results in Theory and Applications","volume":"985 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Optics - Novel Results in Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.83718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The number of publications concerning different aspects of nonlinear optics is enormous and hardly observable. We briefly discuss in this chapter the fundamental nonlinear optical phenomena and methods of their analysis. Nonlinear optics is related to the analysis of the nonlinear interaction between light and matter when the light-induced changes of the medium optical properties occur [1, 2]. The nonlinear optical effects are weak, and their observation became possible only after the invention of lasers which provide a highly coherent and intense radiation [2]. A typical nonlinear optical process consists of two stages. First, the intense coherent light induces a nonlinear response of the medium, and then the modified medium influences the optical radiation in a nonlinear way [1]. The nonlinear medium is described by a system of the dynamic equations including the optical field. The optical field itself is described by Maxwell’s equations including the nonlinear polarization of the medium [1, 2]. All media are essentially nonlinear; however, the nonlinear coupling coefficients are usually very small and can be enhanced by the sufficiently strong optical radiation [1, 2]. For this reason, to a first approximation, light and matter can be considered as a system of uncoupled oscillators, and the nonlinear terms are some orders of magnitude smaller than the linear ones [2]. Nevertheless, the nonlinear effects can be important in the long-time and longdistance limits [2]. Generally, the light can be considered as a superposition of plane
导论章:非线性光学现象
关于非线性光学的不同方面的出版物的数量是巨大的,很难观察到。本章简要讨论了非线性光学的基本现象及其分析方法。非线性光学是分析光引起介质光学性质变化时光与物质之间的非线性相互作用[1,2]。非线性光学效应很弱,只有在提供高相干和强辐射的激光器发明之后才有可能观察到它们[2]。典型的非线性光学过程包括两个阶段。首先,强相干光引起介质的非线性响应,然后修饰后的介质对光辐射产生非线性影响[1]。非线性介质用包含光场的动力学方程组来描述。光场本身由麦克斯韦方程组描述,包括介质的非线性偏振[1,2]。所有的介质本质上都是非线性的;然而,非线性耦合系数通常很小,并且可以通过足够强的光辐射来增强[1,2]。因此,近似地说,光和物质可以看作是一个不耦合的振子系统,非线性项比线性项小几个数量级[2]。然而,在长时间和长距离限制下,非线性效应可能很重要[2]。一般来说,光可以看作是平面的叠加
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信