{"title":"Introductory Chapter: Nonlinear Optical Phenomena","authors":"B. Lembrikov","doi":"10.5772/INTECHOPEN.83718","DOIUrl":null,"url":null,"abstract":"The number of publications concerning different aspects of nonlinear optics is enormous and hardly observable. We briefly discuss in this chapter the fundamental nonlinear optical phenomena and methods of their analysis. Nonlinear optics is related to the analysis of the nonlinear interaction between light and matter when the light-induced changes of the medium optical properties occur [1, 2]. The nonlinear optical effects are weak, and their observation became possible only after the invention of lasers which provide a highly coherent and intense radiation [2]. A typical nonlinear optical process consists of two stages. First, the intense coherent light induces a nonlinear response of the medium, and then the modified medium influences the optical radiation in a nonlinear way [1]. The nonlinear medium is described by a system of the dynamic equations including the optical field. The optical field itself is described by Maxwell’s equations including the nonlinear polarization of the medium [1, 2]. All media are essentially nonlinear; however, the nonlinear coupling coefficients are usually very small and can be enhanced by the sufficiently strong optical radiation [1, 2]. For this reason, to a first approximation, light and matter can be considered as a system of uncoupled oscillators, and the nonlinear terms are some orders of magnitude smaller than the linear ones [2]. Nevertheless, the nonlinear effects can be important in the long-time and longdistance limits [2]. Generally, the light can be considered as a superposition of plane","PeriodicalId":231551,"journal":{"name":"Nonlinear Optics - Novel Results in Theory and Applications","volume":"985 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Optics - Novel Results in Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.83718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The number of publications concerning different aspects of nonlinear optics is enormous and hardly observable. We briefly discuss in this chapter the fundamental nonlinear optical phenomena and methods of their analysis. Nonlinear optics is related to the analysis of the nonlinear interaction between light and matter when the light-induced changes of the medium optical properties occur [1, 2]. The nonlinear optical effects are weak, and their observation became possible only after the invention of lasers which provide a highly coherent and intense radiation [2]. A typical nonlinear optical process consists of two stages. First, the intense coherent light induces a nonlinear response of the medium, and then the modified medium influences the optical radiation in a nonlinear way [1]. The nonlinear medium is described by a system of the dynamic equations including the optical field. The optical field itself is described by Maxwell’s equations including the nonlinear polarization of the medium [1, 2]. All media are essentially nonlinear; however, the nonlinear coupling coefficients are usually very small and can be enhanced by the sufficiently strong optical radiation [1, 2]. For this reason, to a first approximation, light and matter can be considered as a system of uncoupled oscillators, and the nonlinear terms are some orders of magnitude smaller than the linear ones [2]. Nevertheless, the nonlinear effects can be important in the long-time and longdistance limits [2]. Generally, the light can be considered as a superposition of plane