Yoshiki Nakashima, Hiroki Iguchi, Eiko Shimizu, Minh N T Le, Kenta Takakura, Yuta Nakamura, Teruhiko Yanagisawa, Rutvi Sanghavi, Satoshi Haneda, Masayoshi Tsukahara
{"title":"Improved Production of Induced Pluripotent Stem Cells Using Dot Pattern Culture Plates.","authors":"Yoshiki Nakashima, Hiroki Iguchi, Eiko Shimizu, Minh N T Le, Kenta Takakura, Yuta Nakamura, Teruhiko Yanagisawa, Rutvi Sanghavi, Satoshi Haneda, Masayoshi Tsukahara","doi":"10.1089/ten.TEC.2023.0068","DOIUrl":"10.1089/ten.TEC.2023.0068","url":null,"abstract":"<p><p>The rate of cell proliferation is a crucial factor in cell production under good manufacturing practice (GMP) control. In this study, we identified a culture system for induced pluripotent cells (iPSCs) that supports cell proliferation and viability and maintains the cells in an undifferentiated state even at 8 days after seeding. This system involves the use of dot pattern culture plates that have been coated with a chemically defined scaffold which has high biocompatibility. Under cell starvation conditions, where medium exchange was not performed for 7 days or where the amount of medium exchange was reduced to half or a quarter, iPSC viability and lack of differentiation were maintained. The rate of cell viability in this culture system was greater than generally obtained by standard culture methods. The cells in this compartmentalized culture system could be induced to differentiate in a controlled and consistent manner: differentiation of endoderm occurred in a controlled and consistent manner: endoderm, mesoderm, and ectoderm could be consistently induced to differentiate in the cultures. In conclusion, we have developed a culture system that supports high viability in iPSCs and allows their controlled differentiation. This system has the potential for use in GMP-based production of iPSCs for clinical purposes.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 9","pages":"410-423"},"PeriodicalIF":3.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10299523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effective Technical Protocol for Producing a Mono-Iodoacetate-Induced Temporomandibular Joint Osteoarthritis in a Rat Model.","authors":"So-Yeon Yun, Yerin Kim, Hyunjeong Kim, Bu-Kyu Lee","doi":"10.1089/ten.TEC.2023.0066","DOIUrl":"10.1089/ten.TEC.2023.0066","url":null,"abstract":"<p><p>An animal model of osteoarthritis (OA) induced by monosodium iodoacetate (MIA) can be effectively adjusted based on the concentration of MIA to control the onset, progression, and severity of OA as required. The rat temporomandibular joint osteoarthritis (TMJOA) model using MIA is a useful tool for studying the effectiveness of disease-modifying OA drugs in TMJOA research. However, the intricate and complex anatomy of the rat TMJ often poses challenges in achieving consistent TMJOA induction during experiments. In the previous article, a reference point was established by drawing parallel lines based on the line connecting the external ear and the zygomatic arch. However, this is not suitable for the anatomical characteristics of the rat. We used the zygomatic arch as a reference, which is a technical protocol that considers it. In our protocol, we designated a point ∼1 mm away from the point where the zygomatic arch bends toward the ear as the injection site. To ensure precise injection of MIA and increase the likelihood of inducing OA, it is recommended to insert the needle at a 45° angle so that the needle tip contacts the joint projection. To confirm TMJOA induction, we identified changes in the condyle using <i>in vivo</i> microcomputed tomography (CT) in a rat model of MIA-induced OA and measured the degree of pain-related inflammation using head withdrawal threshold (HWT) measurements. Micro-CT scanning revealed typical OA-like lesions, including degenerative changes and subchondral bone remodeling induced by MIA in the TMJ. Pain, a major clinical feature of OA, showed an appropriate response corresponding to the structural changes shown in micro-CT scanning. In addition, the MIA concentration suitable for long-term observation of lesions was determined through <i>ex vivo</i> micro-CT imaging and HWT measurements. The 8 mg concentration exhibited a significant difference compared with others, confirming the sustained presence of lesions, particularly through changes in subchondral bone over an extended period. Consequently, we have successfully established a reliable rat TMJOA induction model and identified the MIA concentration suitable for long-term observation of subchondral bone research, which will greatly contribute to the study of TMJOA-an incurable disease lacking specific treatment options. The Clinical Trial Registration number is 2021-12-208.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 9","pages":"438-445"},"PeriodicalIF":3.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10298512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlotte H Hulme, John K Garcia, Claire Mennan, Jade Perry, Sally Roberts, Kevin Norris, Duncan Baird, Larissa Rix, Robin Banerjee, Carl Meyer, Karina T Wright
{"title":"The Upscale Manufacture of Chondrocytes for Allogeneic Cartilage Therapies.","authors":"Charlotte H Hulme, John K Garcia, Claire Mennan, Jade Perry, Sally Roberts, Kevin Norris, Duncan Baird, Larissa Rix, Robin Banerjee, Carl Meyer, Karina T Wright","doi":"10.1089/ten.TEC.2023.0037","DOIUrl":"10.1089/ten.TEC.2023.0037","url":null,"abstract":"<p><p>Allogeneic chondrocyte therapies need to be developed to allow more individuals to be treated with a cell therapy for cartilage repair and to reduce the burden and cost of the current two-stage autologous procedures. Upscale manufacture of chondrocytes using a bioreactor could help provide an off-the-shelf allogeneic chondrocyte therapy with many doses being produced in a single manufacturing run. In this study, we assess a good manufacturing practice-compliant hollow-fiber bioreactor (Quantum<sup>®</sup>) for adult chondrocyte manufacture. Chondrocytes were isolated from knee arthroplasty-derived cartilage (<i>n</i> = 5) and expanded in media supplemented with 10% fetal bovine serum (FBS) or 5% human platelet lysate (hPL) on tissue culture plastic (TCP) for a single passage. hPL-supplemented cultures were then expanded in the Quantum bioreactor for a further passage. Matched, parallel cultures in hPL or FBS were maintained on TCP. Chondrocytes from all culture conditions were characterized in terms of growth kinetics, morphology, immunoprofile, chondrogenic potential (chondrocyte pellet assays), and single telomere length analysis. Quantum expansion of chondrocytes resulted in 86.4 ± 38.5 × 10<sup>6</sup> cells in 8.4 ± 1.5 days, following seeding of 10.2 ± 3.6 × 10<sup>6</sup> cells. This related to 3.0 ± 1.0 population doublings in the Quantum bioreactor, compared with 2.1 ± 0.6 and 1.3 ± 1.0 on TCP in hPL- and FBS-supplemented media, respectively. Quantum- and TCP-expanded cultures retained equivalent chondropotency and mesenchymal stromal cell marker immunoprofiles, with only the integrin marker, CD49a, decreasing following Quantum expansion. Quantum-expanded chondrocytes demonstrated equivalent chondrogenic potential (as assessed by ability to form and maintain chondrogenic pellets) with matched hPL TCP populations. hPL manufacture, however, led to reduced chondrogenic potential and increased cell surface positivity of integrins CD49b, CD49c, and CD51/61 compared with FBS cultures. Quantum expansion of chondrocytes did not result in shortened 17p telomere length when compared with matched TCP cultures. This study demonstrates that large numbers of adult chondrocytes can be manufactured in the Quantum hollow-fiber bioreactor. This rapid, upscale expansion does not alter chondrocyte phenotype when compared with matched TCP expansion. Therefore, the Quantum provides an attractive method of manufacturing chondrocytes for clinical use. Media supplementation with hPL for chondrocyte expansion may, however, be unfavorable in terms of retaining chondrogenic capacity.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 9","pages":"424-437"},"PeriodicalIF":3.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10299041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xueying Hou, Enchong Zhang, Yukun Mao, Jie Luan, Su Fu
{"title":"A Bibliometric Analysis of Research on Decellularized Matrix for Two Decades.","authors":"Xueying Hou, Enchong Zhang, Yukun Mao, Jie Luan, Su Fu","doi":"10.1089/ten.TEC.2023.0013","DOIUrl":"10.1089/ten.TEC.2023.0013","url":null,"abstract":"<p><p>The articles and reviews in the field of decellularized extracellular matrix (dECM) from 2001 to 2021 were retrieved and extracted from the Web of Science Core Collection. The R package Bibliometrix, CiteSpace, VOSviewer, and the online BIBLIOMETRC platform were utilized for bibliometric analysis, including specific characteristics of annual publications, influential countries/regions, core journals, leading institutions, keywords, key references, cocited authors, journals and institutions, cooperation, and historical direct citations. Our study concluded core references that fueled the development of dECM and highlighted current research directions, hotpots, and trends. From 2001 to 2021, 3,046 publications were retrieved in total, including 2,700 articles and 349 reviews. The United States (<i>n</i> = 895) produced the majority of publications, and the University of Pittsburgh (<i>n</i> = 318) published most productions. <i>Biomaterials</i> were identified as the most productive and influential journal in the dECM field considering the number of publications (<i>n</i> = 194), and total citations (<i>n</i> = 15,694). Immunomodulation, bioreactors, aging, three-dimensional (3D) bioprinting, bone tissue engineering, bioink, hydrogel, biomaterials, and regeneration were the latest high-frequency keywords, indicating the emerging frontiers of dECM. In the field, decellularization techniques lay the foundation. Orthotopic transplantation of recellularized dECM and induction of specific cell differentiation promoted the bursts of research. The 3D bioprinting and hydrogel based on dECM were extensively studied in recent years. The present study provided developmental trajectories, current research status, global collaboration patterns, hotpots, and trending topics of dECM. Decellularization techniques, tissue engineering to regenerate organs, and improvements in application are the major themes over the past two decades. Impact Statement The review article is significant because decellularized extracellular matrix (dECM), which derived from biological tissues and removal of immunogenic cells, is characterized by safety, biocompatibility, and low in toxicity. Showing great application prospects, dECM has been applied in multiple scenarios of tissue repairment and reconstruction, among the most popular topics in tissue engineering. Thus, analyzing and concluding the development, current condition and future trends are of great significance. Comparing to conventional review, this review article systemically and comprehensively concluded the historical development, current status, and research trending topics. Thus, it allows scholars to get a rapid overview of the dECM field, and plan research directions.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 9","pages":"395-409"},"PeriodicalIF":3.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10663606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elda A Treviño, Jimmy Shah, Joseph J Pearson, Manu O Platt, Younan Xia, Johnna S Temenoff
{"title":"Microfluidic Platform for Microparticle Fabrication and Release of a Cathepsin Inhibitor.","authors":"Elda A Treviño, Jimmy Shah, Joseph J Pearson, Manu O Platt, Younan Xia, Johnna S Temenoff","doi":"10.1089/ten.TEC.2023.0015","DOIUrl":"10.1089/ten.TEC.2023.0015","url":null,"abstract":"<p><p>Cathepsins are a family of cysteine proteases responsible for a variety of homeostatic functions throughout the body, including extracellular matrix remodeling, and have been implicated in a variety of degenerative diseases. However, clinical trials using systemic administration of cathepsin inhibitors have been abandoned due to side effects, so local delivery of cathepsin inhibitors may be advantageous. In these experiments, a novel microfluidic device platform was developed that can synthesize uniform, hydrolytically degradable microparticles from a combination of poly(ethylene glycol) diacrylate (PEGDA) and dithiothreitol (DTT). Of the formulations examined, the 10-polymer weight percentage 10 mM DTT formulation degraded after 77 days <i>in vitro</i>. A modified assay using the DQ Gelatin Fluorogenic Substrate was used to demonstrate sustained release and bioactivity of a cathepsin inhibitor (E-64) released from hydrogel microparticles over 2 weeks <i>in vitro</i> (up to ∼13 μg/mL released with up to ∼40% original level of inhibition remaining at day 14). Altogether, the technologies developed in this study will allow a small-molecule, broad cathepsin inhibitor E-64 to be released in a sustained manner for localized inhibition of cathepsins for a wide variety of diseases.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 8","pages":"361-370"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10431218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Call for Special Issue Papers:</i> Artificial Intelligence in Tissue Engineering and Biology.","authors":"Jason L Guo, Michael Januszyk, Michael T Longaker","doi":"10.1089/ten.tec.2023.29040.cfp","DOIUrl":"https://doi.org/10.1089/ten.tec.2023.29040.cfp","url":null,"abstract":"","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 8","pages":"347-348"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9971472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kamal Awad, Logan Moore, Jian Huang, Lauren Gomez, Leticia Brotto, Venu Varanasi, Christopher Cardozo, Noah Weisleder, Zui Pan, Jingsong Zhou, Lynda Bonewald, Marco Brotto
{"title":"Advanced Methodology for Rapid Isolation of Single Myofibers from Flexor Digitorum Brevis Muscle.","authors":"Kamal Awad, Logan Moore, Jian Huang, Lauren Gomez, Leticia Brotto, Venu Varanasi, Christopher Cardozo, Noah Weisleder, Zui Pan, Jingsong Zhou, Lynda Bonewald, Marco Brotto","doi":"10.1089/ten.TEC.2023.0012","DOIUrl":"10.1089/ten.TEC.2023.0012","url":null,"abstract":"<p><p>Isolated individual myofibers are valuable experimental models that can be used in various conditions to understand skeletal muscle physiology and pathophysiology at the tissue and cellular level. This report details a time- and cost-effective method for isolation of single myofibers from the flexor digitorum brevis (FDB) muscle in both young and aged mice. The FDB muscle was chosen for its documented history in single myofiber experiments. By modifying published methods for FDB myofiber isolation, we have optimized the protocol by first separating FDB muscle into individual bundles before the digestion, followed by optimizing the subsequent digestion medium conditions to ensure reproducibility. Morphological and functional assessments demonstrate a high yield of isolated FDB myofibers with sarcolemma integrity achieved in a shorter time frame than previous published procedures. This method could be also adapted to other types of skeletal muscle. Additionally, this highly reproducible method can greatly reduce the number of animals needed to yield adequate numbers of myofibers for experiments. Thus, this advanced method for myofiber isolation has the potential to accelerate research in skeletal muscle physiology and screening potential therapeutics \"<i>ex vivo</i>\" for muscle diseases and regeneration.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 8","pages":"349-360"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9972435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kathleen N Brown, Hong Kim T Phan, Elysa L Jui, Marci K Kang, Jennifer P Connell, Sundeep G Keswani, K Jane Grande-Allen
{"title":"Isolation and Characterization of Porcine Endocardial Endothelial Cells.","authors":"Kathleen N Brown, Hong Kim T Phan, Elysa L Jui, Marci K Kang, Jennifer P Connell, Sundeep G Keswani, K Jane Grande-Allen","doi":"10.1089/ten.TEC.2023.0009","DOIUrl":"10.1089/ten.TEC.2023.0009","url":null,"abstract":"<p><p>The heart contains diverse endothelial cell types. We sought to characterize the endocardial endothelial cells (EECs), which line the chambers of the heart. EECs are relatively understudied, yet their dysregulation can lead to various cardiac pathologies. Due to the lack of commercial availability of these cells, we reported our protocol for isolating EECs from porcine hearts and for establishing an EEC population through cell sorting. In addition, we compared the EEC phenotype and fundamental behaviors to a well-studied endothelial cell line, human umbilical vein endothelial cells (HUVECs). The EECs stained positively for classic phenotypic markers such as CD31, von Willebrand Factor, and vascular endothelial (VE) cadherin. The EECs proliferated more quickly than HUVECs at 48 h (1310 ± 251 cells vs. 597 ± 130 cells, <i>p</i> = 0.0361) and at 96 h (2873 ± 257 cells vs. 1714 ± 342 cells, <i>p</i> = 0.0002). Yet EECs migrated more slowly than HUVECs to cover a scratch wound at 4 h (5% ± 1% wound closure vs. 25% ± 3% wound closure, <i>p</i> < 0.0001), 8 h (15% ± 4% wound closure vs. 51% ± 12% wound closure, <i>p</i> < 0.0001), and 24 h (70% ± 11% wound closure vs. 90% ± 3% wound closure, <i>p</i> < 0.0001). Finally, the EECs maintained their endothelial phenotype by positive expression of CD31 through more than a dozen passages (three populations of EECs showing 97% ± 1% CD31<sup>+</sup> cells in over 14 passages). In contrast, the HUVECs showed significantly reduced CD31 expression over high passages (80% ± 11% CD31<sup>+</sup> cells over 14 passages). These important phenotypic differences between EECs and HUVECs highlight the need for researchers to utilize the most relevant cell types when studying or modeling diseases of interest.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 8","pages":"371-380"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10430665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molly Tzu-Yu Lin, Isabelle Xin Yu Lee, Wei-Li Chen, Mei-Yun Chen, Jodhbir S Mehta, Gary H F Yam, Gary S L Peh, Yu-Chi Liu
{"title":"Culture of Primary Neurons from Dissociated and Cryopreserved Mouse Trigeminal Ganglion.","authors":"Molly Tzu-Yu Lin, Isabelle Xin Yu Lee, Wei-Li Chen, Mei-Yun Chen, Jodhbir S Mehta, Gary H F Yam, Gary S L Peh, Yu-Chi Liu","doi":"10.1089/ten.TEC.2023.0054","DOIUrl":"https://doi.org/10.1089/ten.TEC.2023.0054","url":null,"abstract":"<p><p>Corneal nerves originate from the ophthalmic branch of the trigeminal nerve, which enters the cornea at the limbus radially from all directions toward the central cornea. The cell bodies of the sensory neurons of trigeminal nerve are located in the trigeminal ganglion (TG), while the axons are extended into the three divisions, including ophthalmic branch that supplies corneal nerves. Study of primary neuronal cultures established from the TG fibers can therefore provide a knowledge basis for corneal nerve biology and potentially be developed as an <i>in vitro</i> platform for drug testing. However, setting up primary neuron cultures from animal TG has been dubious with inconsistency among laboratories due to a lack of efficient isolation protocol, resulting in low yield and heterogenous cultures. In this study, we used a combined enzymatic digestion with collagenase and TrypLE to dissociate mouse TG while preserving nerve cell viability. A subsequent discontinuous Percoll density gradient followed by mitotic inhibitor treatment effectively diminished the contamination of non-neuronal cells. Using this method, we reproducibly generated high yield and homogenous primary TG neuron cultures. Similar efficiency of nerve cell isolation and culture was further obtained for TG tissue cryopreserved for short (1 week) and long duration (3 months), compared to freshly isolated tissues. In conclusion, this optimized protocol shows a promising potential to standardize TG nerve culture and generate a high-quality corneal nerve model for drug testing and neurotoxicity studies.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 8","pages":"381-393"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10055899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}