Wenjiao Cao, Qinyu Zhang, Yating Huang, Qiuwan Zhang, Dongmei Lai
{"title":"Pretreatment with Inflammatory Factors Altered the Secretome of Human Amniotic Epithelial Cells.","authors":"Wenjiao Cao, Qinyu Zhang, Yating Huang, Qiuwan Zhang, Dongmei Lai","doi":"10.1089/ten.TEC.2024.0065","DOIUrl":"10.1089/ten.TEC.2024.0065","url":null,"abstract":"<p><p>Human amniotic epithelial cells (hAECs) are novel and promising therapeutic agents for patients suffering from degenerative diseases. Studies have demonstrated that the therapeutic effects of hAECs mainly depend on their paracrine components. Currently, appropriate pretreatment is a widely confirmed strategy for enhancing the repair potential of stem cells; however, the effect of proinflammatory factor pretreatment on hAECs and their secretome is still unclear. In this study, we used the well-characterized proinflammatory factors tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) to stimulate hAECs and analyzed the effect of TNF-α and IFN-γ on hAECs, including gene expression profile, paracrine proteins, and microRNAs (miRNAs) in exosomes. Results showed that TNF-α and IFN-γ pretreatment improved the viability of hAECs but inhibited the proliferation of hAECs. TNF-α and IFN-γ pretreatment altered the gene expression profile of hAECs, and upregulated differentially expressed genes were predominantly enriched in biological adhesion, antioxidant activity, and response to IFN-beta. In addition, TNF-α and IFN-γ pretreatment enhanced the paracrine secretion of cytokines by hAECs. The upregulated differentially expressed proteins were mainly enriched in tissue remodeling proteins and cytokine-cytokine receptor. Notably, the expression of miRNAs in exosomes from hAECs was also changed by TNF-α and IFN-γ pretreatment. The target genes of upregulated exosomal miRNAs substantially contributed to the response to stimulus, metabolic pathways, and PI3K-Akt signaling pathway. Our findings improve our understanding of the biological characteristics of hAECs after proinflammatory factor pretreatment and provide novel insights to strengthen and optimize the therapeutic potential of hAECs and their secretome in regenerative medicine.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bryanna L Samolyk, Zoe Y Pace, Juanyong Li, Kristen L Billiar, Jeannine M Coburn, Catherine F Whittington, George D Pins
{"title":"Developing Porous Fibrin Scaffolds with Tunable Anisotropic Features to Direct Myoblast Orientation.","authors":"Bryanna L Samolyk, Zoe Y Pace, Juanyong Li, Kristen L Billiar, Jeannine M Coburn, Catherine F Whittington, George D Pins","doi":"10.1089/ten.TEC.2023.0363","DOIUrl":"10.1089/ten.TEC.2023.0363","url":null,"abstract":"<p><p>Functional regeneration of anisotropically aligned tissues such as ligaments, microvascular networks, myocardium, or skeletal muscle requires a temporal and spatial series of biochemical and biophysical cues to direct cell functions that promote native tissue regeneration. When these cues are lost during traumatic injuries such as volumetric muscle loss (VML), scar formation occurs, limiting the regenerative capacity of the tissue. Currently, autologous tissue transfer is the gold standard for treating injuries such as VML but can result in adverse outcomes including graft failure, donor site morbidity, and excessive scarring. Tissue-engineered scaffolds composed of biomaterials, cells, or both have been investigated to promote functional tissue regeneration but are still limited by inadequate tissue ingrowth. These scaffolds should provide precisely tuned topographies and stiffnesses using proregenerative materials to encourage tissue-specific functions such as myoblast orientation, followed by aligned myotube formation and recovery of functional contraction. In this study, we describe the design and characterization of novel porous fibrin scaffolds with anisotropic microarchitectural features that recapitulate the native tissue microenvironment and offer a promising approach for regeneration of aligned tissues. We used directional freeze-casting with varied fibrin concentrations and freezing temperatures to produce scaffolds with tunable degrees of anisotropy and strut widths. Nanoindentation analyses showed that the moduli of our fibrin scaffolds varied as a function of fibrin concentration and were consistent with native skeletal muscle tissue. Quantitative morphometric analyses of myoblast cytoskeletons on scaffold microarchitectures demonstrated enhanced cell alignment as a function of microarchitectural morphology. The ability to precisely control the anisotropic features of fibrin scaffolds promises to provide a powerful tool for directing aligned tissue ingrowth and enhance functional regeneration of tissues such as skeletal muscle.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"217-228"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140336875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jovana Ilic, Christoph Koelbl, Friederike Simon, Maximiliane Wußmann, Regina Ebert, Drenka Trivanovic, Marietta Herrmann
{"title":"Liquid Overlay and Collagen-Based Three-Dimensional Models for <i>In Vitro</i> Investigation of Multiple Myeloma.","authors":"Jovana Ilic, Christoph Koelbl, Friederike Simon, Maximiliane Wußmann, Regina Ebert, Drenka Trivanovic, Marietta Herrmann","doi":"10.1089/ten.TEC.2023.0374","DOIUrl":"10.1089/ten.TEC.2023.0374","url":null,"abstract":"<p><p>Multiple myeloma (MM) clones reside in the bone marrow (BM), which plays a role in its survival and development. The interactions between MM and their neighboring mesenchymal stromal cells (MSCs) have been shown to promote MM growth and drug resistance. However, those interactions are often missing or misrepresented in traditional two-dimensional (2D) culture models. Application of novel three-dimensional (3D) models might recapitulate the BM niche more precisely, which will offer new insights into MM progression and survival. Here, we aimed to establish two 3D models, based on MSC spheroids and collagen droplets incorporating both MM cells and MSCs with the goal of replicating the native myeloma context of the BM niche. This approach revealed that although MSCs can spontaneously assemble spheroids with altered metabolic traits, MSC spheroid culture does not support the integration of MM cells. On the contrary, collagen-droplet culture supported the growth of both cell types. In collagen, MSC proliferation was reduced, with the correlating decrease in ATP production and Ki-67 expression, which might resemble <i>in vivo</i> conditions, rather than 2D abundance of nutrients and space. MSCs and MMs were distributed homogenously throughout the collagen droplet, with an apparent CXCL12 expression in MSCs. In addition, the response of MM cells to bortezomib was substantially reduced in collagen, indicating the importance of 3D culture in the investigation of myeloma cell behavior, as drug resistance is one of the most pertinent issues in cancer therapy.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"193-205"},"PeriodicalIF":3.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140307022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah A Hewes, Fariha N Ahmad, Jennifer P Connell, K Jane Grande-Allen
{"title":"Technique for Rapidly Forming Networks of Microvessel-Like Structures.","authors":"Sarah A Hewes, Fariha N Ahmad, Jennifer P Connell, K Jane Grande-Allen","doi":"10.1089/ten.TEC.2023.0318","DOIUrl":"10.1089/ten.TEC.2023.0318","url":null,"abstract":"<p><p>Modeling organ-blood barriers through the inclusion of microvessel networks within <i>in vitro</i> tissue models could lead to more physiologically accurate results, especially since organ-blood barriers are crucial to the normal function, drug transport, and disease states of vascularized organs. Microvessel networks are difficult to form, since they push the practical limits of most fabrication methods, and it is difficult to coax vascular cells to self-assemble into structures larger than capillaries. Here, we present a method for rapidly forming networks of microvessel-like structures using sacrificial alginate structures. Specifically, we encapsulated endothelial cells within short alginate threads, and then embedded them in collagen gel. Following enzymatic degradation of the alginate, the collagen gel contained a network of hollow channels seeded with cells, all surrounding a perfusable central channel. This method uses a 3D-printed coaxial extruder and syringe pumps to generate short threads in a way that is repeatable and easily transferrable to other labs. The cell-laden, sacrificial alginate threads can be frozen after fabrication and thawed before embedding without significant loss of cell viability. The ability to freeze the threads enables future scale-up and ease of use. Within millifluidic devices that restrict access to media, the threads enhance cell survival under static conditions. These results indicate the potential for use of this method in a range of tissue engineering applications.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"229-237"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140870097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Liu, Hai Huang, Hang Zhou, Yifeng Yuan, Xiaolin Shi
{"title":"The Evolution and Future Trends of Stromal Vascular Fraction: A Bibliometric Analysis.","authors":"Yang Liu, Hai Huang, Hang Zhou, Yifeng Yuan, Xiaolin Shi","doi":"10.1089/ten.TEC.2023.0310","DOIUrl":"10.1089/ten.TEC.2023.0310","url":null,"abstract":"<p><p>The heterogeneous population of cells obtained from processed adipose tissue, known as stromal vascular fraction (SVF), exhibits immunomodulatory and angiogenic properties. The therapeutic efficacy of SVF has been substantiated in numerous diseases, instilling hope for its clinical application as a cellular therapy. This study aims to provide a comprehensive analysis of the scholarly literature on SVF, including its worldwide progression, highlighting significant literatures, temporal development, research clusters, current active topics, and emerging trends. The combination of CiteSpace, HistCite Pro, and VOS Viewer tools was used to analyze the SVF literature. The overall panorama of the field is elucidated in terms of publication count, timeline, institutional distribution, journal coverage, and authors' contributions. In addition, this analysis explores the literature and keywords through the lens of co-occurrence, citation, and co-citation frequencies. Clustering algorithms are used to track the trajectory of the literature further, providing insight into its development. The findings offer a comprehensive overview of the progress made in the SVF field, highlighting distinct phases of development: the \"Seedling period\" from 1980 to 2010, the \"Panicle period\" from 2011 to 2016, and the \"Flowering period\" from 2017 to 2023. Within these periods, the evolution of 10 clusters is unraveled, encompassing topics such as vascular disease, CD34 expression, adipose tissue macrophage in 2013, cell-assisted lipotransfer, and knee osteoarthritis. In summary, this bibliometric study, conducting a quantitative analysis of publications in SVF research, encompasses a global overview of research, an analysis of pivotal literature in the field, research hotspots, and emerging frontiers.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"143-158"},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139418124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andressa Valim Parca, Naira Caroline Godoy Pieri, Paulo Fantinato Neto, Fabiana Fernandes Bressan, Carlos Eduardo Ambrósio, Daniele Dos Santos Martins
{"title":"Comparative Analysis of Fluorescent Labeling Techniques for Tracking Canine Amniotic Stem Cells.","authors":"Andressa Valim Parca, Naira Caroline Godoy Pieri, Paulo Fantinato Neto, Fabiana Fernandes Bressan, Carlos Eduardo Ambrósio, Daniele Dos Santos Martins","doi":"10.1089/ten.TEC.2023.0286","DOIUrl":"10.1089/ten.TEC.2023.0286","url":null,"abstract":"<p><p>The utmost aim of regenerative medicine is to promote the regeneration of injured tissues using stem cells. Amniotic mesenchymal stem cells (AmMSCs) have been used in several studies mainly because of their easy isolation from amniotic tissue postpartum and immunomodulatory and angiogenic properties and the low level of rejection. These cells share characteristics of both embryonic/fetal and adult stem cells and are particularly advantageous because they do not trigger tumorigenic activity when injected into immunocompromised animals. The large-scale use of AmMSCs for cellular therapies would greatly benefit from fluorescence labeling studies to validate their tracking in future therapies. This study evaluated the fluorophore positivity, fluorescence intensity, and longevity of canine AmMSCs. For this purpose, canine AmMSCs from the GDTI/USP biobank were submitted to three labeling conditions, two commercial fluorophores [CellTrace CFSE Cell Proliferation kit - CTrace, and CellTracker Green CMFDA - CTracker (CellTracker Green CMFDA, CT, #C2925, Molecular Probes<sup>®</sup>; Life Technologies)] and green fluorescent protein (GFP) expression after lentiviral transduction, to select the most suitable tracer in terms of adequate persistence and easy handling and analysis that could be used in studies of domestic animals. Fluorescence was detected in all groups; however, the patterns were different. Specifically, CTrace and CTracker fluorescence was detected 6 h after labeling, while GFP was visualized no earlier than 48 h after transduction. Flow cytometry analysis revealed more than 70% of positive cells on day 7 in the CTrace and CTracker groups, while fluorescence decreased significantly to 10% or less on day 20. Variations between repetitions were observed in the GFP group under the present conditions. Our results showed earlier fluorescence detection and more uniform results across repetitions for the commercial fluorophores. In contrast, fluorescence persisted for more extended periods in the GFP group. These results indicate a promising direction for assessing the roles of canine AmMSCs in regenerative medicine without genomic integration.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"183-192"},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139973568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wang Lu, Mengchu Yang, Yanan Zhang, Baoxi Meng, Fulian Ma, Wanjun Wang, Teng Guo
{"title":"Characterization of Acellular Cartilage Matrix-Sodium Alginate Scaffolds in Various Proportions.","authors":"Wang Lu, Mengchu Yang, Yanan Zhang, Baoxi Meng, Fulian Ma, Wanjun Wang, Teng Guo","doi":"10.1089/ten.TEC.2023.0348","DOIUrl":"10.1089/ten.TEC.2023.0348","url":null,"abstract":"<p><p>The development of three-dimensional (3D) bioprinting technology has provided a new solution to address the shortage of donors, multiple surgeries, and aesthetic concerns in microtia reconstruction surgery. The production of bioinks is the most critical aspect of 3D bioprinting. Acellular cartilage matrix (ACM) and sodium alginate (SA) are commonly used 3D bioprinting materials, and there have been reports of their combined use. However, there is a lack of comprehensive evaluations on ACM-SA scaffolds with different proportions. In this study, bioinks were prepared by mixing different proportions of decellularized rabbit ear cartilage powder and SA and then printed using 3D bioprinting technology and crosslinked with calcium ions to fabricate scaffolds. The physical properties, biocompatibility, and toxicity of ACM-SA scaffolds with different proportions were compared. The adhesion and proliferation of rabbit adipose-derived stem cells on ACM-SA scaffolds of different proportions, as well as the secretion of Collagen Type II, were evaluated under an adipose-derived stem cell chondrogenic induction medium. The following conclusions were drawn: when the proportion of SA in the ACM-SA scaffolds was <30%, the printed structure failed to form. The ACM-SA scaffolds in proportions from 1:9 to 6:4 showed no significant cytotoxicity, among which the 5:5 proportion of ACM-SA scaffold was superior in terms of adhesiveness and promoting cell proliferation and differentiation. Although a higher proportion of SA can provide greater mechanical strength, it also significantly increases the swelling ratio and reduces cell proliferation capabilities. Overall, the 5:5 proportion of ACM-SA scaffold demonstrated a more desirable biological and physical performance.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"170-182"},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yohaann A Ghosh, Hai Xin, D S Abdullah Al Maruf, Kai Cheng, Innes Wise, Chris Burrows, Ruta Gupta, Veronica Ka-Yan Cheung, James Wykes, David Leinkram, Catriona Froggatt, Will Lewin, Hedi V Kruse, Eva Tomaskovic-Crook, David R McKenzie, Jeremy Crook, Jonathan R Clark
{"title":"Novel Sheep Model to Assess Critical-Sized Bone Regeneration with Periosteum for <i>In Vivo</i> Bioreactors.","authors":"Yohaann A Ghosh, Hai Xin, D S Abdullah Al Maruf, Kai Cheng, Innes Wise, Chris Burrows, Ruta Gupta, Veronica Ka-Yan Cheung, James Wykes, David Leinkram, Catriona Froggatt, Will Lewin, Hedi V Kruse, Eva Tomaskovic-Crook, David R McKenzie, Jeremy Crook, Jonathan R Clark","doi":"10.1089/ten.TEC.2023.0345","DOIUrl":"10.1089/ten.TEC.2023.0345","url":null,"abstract":"<p><p>Considerable research is being undertaken to develop novel biomaterials-based approaches for surgical reconstruction of bone defects. This extends to three-dimensional (3D) printed materials that provide stable, structural, and functional support <i>in vivo</i>. However, few preclinical models can simulate <i>in vivo</i> human biological conditions for clinically relevant testing. In this study we describe a novel ovine model that allows evaluation of <i>in vivo</i> osteogenesis via contact with bone and/or periosteum interfaced with printed polymer bioreactors loaded with biomaterial bone substitutes. The infraspinous scapular region of 14 Dorset cross sheep was exposed. Vascularized periosteum was elevated either attached to the infraspinatus muscle or separately. In both cases, the periosteum was supplied by the periosteal branch of the circumflex scapular vessels. In eight sheep, a 3D printed 4-chambered polyetheretherketone bioreactor was wrapped circumferentially in vascularized periosteum. In 6 sheep, 12 double-sided 3D printed 2-chambered polyetherketone bioreactors were secured to the underlying bone allowing direct contact with the bone on one side and periosteum on the other. Our model enabled simultaneous testing of up to 24 (12 double-sided) 10 × 10 × 5 mm bioreactors per scapula in the flat contact approach or a single 40 × 10 mm four-chambered bioreactor per scapula using the periosteal wrap. <i>De novo</i> bone growth was evaluated using histological and radiological analysis. Of importance, the experimental model was well tolerated by the animals and provides a versatile approach for comparing the osteogenic potential of cambium on the bone surface and elevated with periosteum. Furthermore, the periosteal flaps were sufficiently large for encasing bioreactors containing biomaterial bone substitutes for applications such as segmental mandibular reconstruction.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"159-169"},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yichun Dou, Ling Zhang, Jiaqi Wang, Yun Xue, You Zhou, Yajun Liu, Liqun Zhang, Rui Shi
{"title":"Trends and Future Research in Skeletal Muscle Tissue Engineering in the Past Decade (2012-2022).","authors":"Yichun Dou, Ling Zhang, Jiaqi Wang, Yun Xue, You Zhou, Yajun Liu, Liqun Zhang, Rui Shi","doi":"10.1089/ten.TEC.2023.0216","DOIUrl":"10.1089/ten.TEC.2023.0216","url":null,"abstract":"<p><p>To learn about advances in skeletal muscle tissue engineering (SMTE) in recent years, we used VOSviewer and Citespace software to quantitatively analyze and visualize relevant literature in the Web of Science database during the period 2012-2022. By mapping high-frequency keyword relationship networks, keyword time zones, and journal article cocitations, we clarified the areas of great interest, evolutionary paths, and developmental trends in research on SMTE. We conducted an in-depth analysis of highly cited and representative articles at various stages to summarize the mainstream research areas of great interest in SMTE and discussed the future development and challenges in this field, intending to provide a reference for the clinical treatment of skeletal muscle injury repair. We found that a collaborative network of authors has formed in this field; the journals publishing SMTE articles belong to the fields of biomaterials and tissue engineering, and open-access journals have played a key role in the promotion of the development of SMTE; and in the past decade, there has been rapid progress in SMTE research in terms of both depth and breadth. Impact statement Compared with the literature review method, bibliometrics can provide a comprehensive knowledge of a knowledge area based on a huge amount of literature. In this article, based on the Web of Science database, CiteSpace, and Vosviewer visualization tools were used to measure and analyze the literature reports in the field of skeletal muscle tissue engineering (SMTE). The research hotspots and cutting-edge information on SMTE were mined in terms of the number of publications, the number of citations, the keywords, the authors, and the publishing institutions to understand the current status of the research on SMTE in the world, to provide a reference for related researchers, engineering research in the field of SMTE, to comprehensively understand the current status of global research in the field of SMTE, and to provide a reference for related researchers.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"130-141"},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139540898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhanpeng Xu, Wei Zhang, Carole Quesada, Xueding Wang, Mario Fabiilli
{"title":"Longitudinal Monitoring of Angiogenesis in a Murine Window Chamber Model <i>In Vivo</i>.","authors":"Zhanpeng Xu, Wei Zhang, Carole Quesada, Xueding Wang, Mario Fabiilli","doi":"10.1089/ten.TEC.2023.0289","DOIUrl":"10.1089/ten.TEC.2023.0289","url":null,"abstract":"<p><p>Angiogenesis induced by growth factor administration, which can augment the blood supply in regenerative applications, has drawn wide attention in medical research. Longitudinal monitoring of vascular structure and development <i>in vivo</i> is important for understanding and evaluating the dynamics of involved biological processes. In this work, a dual-modality imaging system consisting of photoacoustic microscopy (PAM) and optical coherence tomography (OCT) was applied for noninvasive <i>in vivo</i> imaging of angiogenesis in a murine model. Fibrin scaffolds, with and without basic fibroblast growth factor (bFGF), were implanted in a flexible imaging window and longitudinally observed over 9 days. Imaging was conducted at 3, 5, 7, and 9 days after implantation to monitor vascularization in and around the scaffold. Several morphometric parameters were derived from the PAM images, including vessel area density (VAD), total vessel length (TVL), and vessel mean diameter (VMD). On days 7 and 9, mice receiving bFGF-laden fibrin gels exhibited significantly larger VAD and TVL compared to mice with fibrin-only gels. In addition, VMD significantly decreased in +bFGF mice versus fibrin-only mice on days 7 and 9. Blood vessel density, evaluated using immunohistochemical staining of explanted gels and underlying tissue on day 9, corroborated the findings from the PAM images. Overall, the experimental results highlight the utility of a dual-modality imaging system in longitudinally monitoring of vasculature <i>in vivo</i> with high resolution and sensitivity, thereby providing an effective tool to study angiogenesis.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"93-101"},"PeriodicalIF":2.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138805997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}