Tissue engineering. Part C, Methods最新文献

筛选
英文 中文
Trends and Advances in Antimicrobial Surface Modification for Orthopedic Implants (2014-2024).
IF 2.7 4区 医学
Tissue engineering. Part C, Methods Pub Date : 2024-12-10 DOI: 10.1089/ten.tec.2024.0266
Fei Liu, Yun Xue, You Zhou, Jingshuang Zhang, Aoao Wang, Rui Shi
{"title":"Trends and Advances in Antimicrobial Surface Modification for Orthopedic Implants (2014-2024).","authors":"Fei Liu, Yun Xue, You Zhou, Jingshuang Zhang, Aoao Wang, Rui Shi","doi":"10.1089/ten.tec.2024.0266","DOIUrl":"https://doi.org/10.1089/ten.tec.2024.0266","url":null,"abstract":"<p><p>The failure of orthopedic implants can significantly impact patients physiologically, psychologically, and economically. A bibliometric study of the field of surface modification for antimicrobial purposes in orthopedic implants provides insights into its developmental trajectory and offers valuable predictions for future advancements, thus playing a pivotal role in guiding research in this domain. Relevant publications on surface modification for antimicrobial purposes in orthopedic implants published between 2014 and 2024 were selected from the Web of Science (Core Collection) dataset and analyzed using VOSviewer and Citespace. The analysis encompassed 725 articles. Over the past decade, there has been a steady increase in the number of publications related to surface modification for antimicrobial purposes in orthopedic implants, with China emerging as the primary contributor. Novel antimicrobial materials development, osteogenesis, and angiogenesis have become focal areas of research interest in this domain. Surface modification for antimicrobial purposes in orthopedic implants garners increasing attention. Research in this field is anticipated to expand, with future focus likely to revolve around novel material applications, repair outcomes, and underlying mechanisms.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Use of Water-Extracted Flaxseed Hydrocolloids in Three-Dimensional Cell Culture.
IF 2.7 4区 医学
Tissue engineering. Part C, Methods Pub Date : 2024-12-10 DOI: 10.1089/ten.tec.2024.0293
Özüm Yildirim-Semerci, Rumeysa Bilginer-Kartal, Ahu Arslan-Yildiz
{"title":"Exploring the Use of Water-Extracted Flaxseed Hydrocolloids in Three-Dimensional Cell Culture.","authors":"Özüm Yildirim-Semerci, Rumeysa Bilginer-Kartal, Ahu Arslan-Yildiz","doi":"10.1089/ten.tec.2024.0293","DOIUrl":"https://doi.org/10.1089/ten.tec.2024.0293","url":null,"abstract":"<p><p>Plant-derived hydrocolloids offer promising prospects in biomedical applications. Among these, Flaxseed hydrocolloid (FSH) can form a soft, elastic, and biocompatible hydrocolloid with tunable viscosity and superior swelling capacity, making it an attractive scaffold. This study introduces a green extraction method for FSH, employing a single-step aqueous extraction process and fabrication of FSH scaffold. Despite growing interest, the pristine form of FSH has not been investigated for sustainable long-term three-dimensional (3D) cell culture. Here, FSH scaffolds were thoroughly characterized for their morphological, chemical, mechanical, and biological properties. 3D cell culture experiments were conducted using NIH-3T3 mouse fibroblast cells, and cell viability was assessed using live/dead and Alamar Blue assays. High cell viability was sustained for long term compared with 2D cell culture. Cell adhesion and 3D cellular morphology on FSH scaffold for 30 days were monitored by scanning electron microscopy analysis. Also, collagen type-I and F-actin expressions were analyzed by immunostaining after 30 days of culture, resulting in 5- and 4-fold increments of fluorescence intensity, respectively. Results indicate sustained cell viability in the long term and favorable cell-material interaction, demonstrating the potential of FSH as a scaffold. This study emphasizes the importance of the green extraction approach, improving the biocompatibility and functionality of FSH tissue engineering applications.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Properties of the Sodium Hyaluronate Composite Hydrogel for Medical Cosmetology.
IF 2.7 4区 医学
Tissue engineering. Part C, Methods Pub Date : 2024-12-10 DOI: 10.1089/ten.tec.2024.0283
Tiantang Fan, Nianqin Xu, Ruishen Zhuge, Mouzhi Liu, Lin Xu, Yu Jin, Songquan Xu, Jinsheng Zhong, Fengzhen Liu
{"title":"Preparation and Properties of the Sodium Hyaluronate Composite Hydrogel for Medical Cosmetology.","authors":"Tiantang Fan, Nianqin Xu, Ruishen Zhuge, Mouzhi Liu, Lin Xu, Yu Jin, Songquan Xu, Jinsheng Zhong, Fengzhen Liu","doi":"10.1089/ten.tec.2024.0283","DOIUrl":"https://doi.org/10.1089/ten.tec.2024.0283","url":null,"abstract":"<p><p>As society advances, an increasing number of people are focusing on the antiaging process of the body and seeking ways to maintain youthful facial features. Intradermal injection has been used to effectively improve the rough and wrinkled skin, playing a role in skin rejuvenation. However, the main component of intradermal injection products is cross-linked sodium hyaluronate (SHA), which has biological toxicity and potential carcinogenicity. In this study, amino acids were used as hyaluronidase inhibitors and combined with non-cross-linked SHA to prepare a synergically stable SHA composite hydrogel. The effects of amino acids on the viscosity and enzyme activity of the hydrogel were investigated. To determine the stability and antioxidant properties of the composite hydrogel, the effects of the introduction of stabilizer and antioxidant on the hydrogel properties were systematically studied. The results of the <i>in vitro</i> study showed that the introduction of amino acids effectively reduced the activity of hyaluronidase, addressing the problem of rapid hydrolysis and the short half-life of SHA hydrogel <i>in vivo</i>. In addition, the results revealed that NaCl stabilizer, niacinamide, and vitamin B12 antioxidants effectively maintained the stability and antioxidant properties of the hydrogels. <i>In vivo</i> results showed that SHA composite hydrogels had no irritating effect on the skin, and the subcutaneous experiments of mice showed that SHA composite hydrogel still retained a high content after 4 weeks. Therefore, the SHA composite hydrogels have promising applications in the field of medical cosmetology.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Optimized Protocol for Multiple Immunohistochemical Staining of Fragile Tissue Samples. 对脆性组织样本进行多重免疫组化染色的优化方案。
IF 2.7 4区 医学
Tissue engineering. Part C, Methods Pub Date : 2024-12-01 Epub Date: 2024-11-22 DOI: 10.1089/ten.tec.2024.0223
Yi Zhang, Yue Li, Wan-Li Zhang, Yan Liang, Lin-Qiao Tang, Cui Peng, Hui-Min Liu, Min Zhu, Liang-Ju Ning
{"title":"An Optimized Protocol for Multiple Immunohistochemical Staining of Fragile Tissue Samples.","authors":"Yi Zhang, Yue Li, Wan-Li Zhang, Yan Liang, Lin-Qiao Tang, Cui Peng, Hui-Min Liu, Min Zhu, Liang-Ju Ning","doi":"10.1089/ten.tec.2024.0223","DOIUrl":"10.1089/ten.tec.2024.0223","url":null,"abstract":"<p><p>Owing to the high occurrence of tissue detachment during the sample preparation process, the application of multiplex immunohistochemistry (mIHC) technology is limited in the field of fragile tissue samples, such as tendons, ligaments, and bones. To optimize a method for preparing sections for mIHC on fragile tissue samples, taking the human anterior cruciate ligament as an example, paraffin-embedded continuous sections with a thickness of 4 μm were divided into two groups: baking groups underwent routine section processing, and after being mounted on glass slides, they were baked at 65°C for 4 h, 8 h, or 24 h; ultraviolet (UV) photosensitive cross-linking groups used adhesive-coated slides for mounting and were directly subjected to UV light-induced cross-linking, with the cross-linking time set at 0 s, 20 s, 40 s, 1 min, 2 min, 3 min, 4 min, and 5 min, respectively. After deparaffinization and rehydration, we simulated the microwave step, which was most likely to cause tissue detachment during the mIHC experimental procedure, and then, the sections were stained with eosin. Finally, using the optimal cross-linking time selected from the UV cross-linking groups, mIHC staining of tendon and bone tissues was performed. After deparaffinization and rehydration, both groups were able to maintain the integrity of the tissue structure, except for the slides from the UV-sensitive cross-linking 0 s group, which showed complete tissue detachment. Following the seventh microwave treatment, the baking groups presented significant tissue detachment. The UV cross-linking groups were affected by the cross-linking time, and severe tissue detachment occurred with cross-linking times of 20 s, 40 s, and 5 min, whereas the tissues cross-linked for 1 min, 2 min, 3 min, and 4 min all maintained complete tissue morphology and structure. Finally, after 2 min of cross-linking, the results of spectral imaging revealed that the tissue morphology and structure were intact. During the process of mIHC staining, photocrosslinking with UV irradiation for 1-4 min effectively preserves the integrity of the tissue morphological structure.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"590-595"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tissue-Engineered Oral Epithelium for Dental Material Testing: Toward In Vitro Biomimetic Models. 用于牙科材料测试的组织工程口腔上皮:建立体外生物仿真模型。
IF 2.7 4区 医学
Tissue engineering. Part C, Methods Pub Date : 2024-12-01 Epub Date: 2024-10-09 DOI: 10.1089/ten.TEC.2024.0154
Foteini Machla, Paraskevi Kyriaki Monou, Chrysanthi Bekiari, Dimitrios Andreadis, Evangelia Kofidou, Emmanuel Panteris, Orestis L Katsamenis, Maria Kokoti, Petros Koidis, Imad About, Dimitrios Fatouros, Athina Bakopoulou
{"title":"Tissue-Engineered Oral Epithelium for Dental Material Testing: Toward <i>In Vitro</i> Biomimetic Models.","authors":"Foteini Machla, Paraskevi Kyriaki Monou, Chrysanthi Bekiari, Dimitrios Andreadis, Evangelia Kofidou, Emmanuel Panteris, Orestis L Katsamenis, Maria Kokoti, Petros Koidis, Imad About, Dimitrios Fatouros, Athina Bakopoulou","doi":"10.1089/ten.TEC.2024.0154","DOIUrl":"10.1089/ten.TEC.2024.0154","url":null,"abstract":"<p><p>Tissue-engineered oral epithelium (ΤΕΟΕ) was developed after comparing various culture conditions, including submerged (SUB) and air-liquid interface (ALI) human cell expansion options. Barrier formation was evaluated via transepithelial electrical resistance (TEER) and calcein permeation via spectrofluorometry. TEOE was further assessed for long-term viability via live/dead staining and development of intercellular connections via transmission electron microscopy. Tissue architecture was evaluated via histochemistry and the expression of pancytokeratin (pCK) via immunohistochemistry. The effect of two commonly used dental resinous monomers on TEOE was evaluated for alterations in cell viability and barrier permeability. ALI/keratinocyte growth factor-supplemented (ALI-KGS) culture conditions led to the formation of an 8-20-layer thick, intercellularly connected epithelial barrier. TEER values of ALI-KGS-developed TEOE decreased compared with all other tested conditions, and the established epithelium intensively expressed pCK. Exposure to dental monomers affected the integrity and architecture of TEOE and induced cellular vacuolation, implicating hydropic degeneration. Despite structural modifications, the permeability of TEOE was not substantially affected after exposure to the monomers. In conclusion, the biological properties of the TEOE mimicking the physiological functional conditions and its value as biocompatibility assessment tool for dental materials were characterized.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"555-568"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of an Innovative Method for Measuring the Contractile Behavior of Engineered Tissues. 设计一种测量工程组织收缩行为的创新方法。
IF 2.7 4区 医学
Tissue engineering. Part C, Methods Pub Date : 2024-12-01 Epub Date: 2024-11-07 DOI: 10.1089/ten.TEC.2024.0228
Étienne Savard, Brice Magne, Carolyne Simard-Bisson, Christian Martel, Danielle Larouche, Robert Gauvin, Véronique J Moulin, Lucie Germain
{"title":"Design of an Innovative Method for Measuring the Contractile Behavior of Engineered Tissues.","authors":"Étienne Savard, Brice Magne, Carolyne Simard-Bisson, Christian Martel, Danielle Larouche, Robert Gauvin, Véronique J Moulin, Lucie Germain","doi":"10.1089/ten.TEC.2024.0228","DOIUrl":"10.1089/ten.TEC.2024.0228","url":null,"abstract":"<p><p>Hypertrophic scarring is a common complication in severely burned patients who undergo autologous skin grafting. Meshed skin grafts tend to contract during wound healing, increasing the risk of pathological scarring. Although various technologies have been used to study cellular contraction, current methods for measuring contractile forces at the tissue level are limited and do not replicate the complexity of native tissues. Self-assembled skin substitutes (SASSs) were developed at the \"Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX\" and are used as permanent full-thickness skin grafts. The autologous skin substitutes are produced using the self-assembly method, allowing the cultured cells to produce their extracellular matrix leading to a tissue-engineered substitute resembling the native skin. The level of contraction of the SASSs during the fabrication process is patient-dependent. Thus, because of its architecture and composition, SASS is an interesting model to study skin contraction <i>in vitro</i>. Unfortunately, standard measurement methods are unsuited for SASS contraction assessment, mainly due to incompatibilities between the SASS manufacturing process and the current contraction force measurement methods. Here, we present an innovative contraction measurement method specifically designed to quantify the contractile behavior of tissue-engineered substitutes, without disrupting the protocol of production. The method uses C-shape anchoring frames that close at different speeds and magnitudes according to the tissue contractile behavior. A finite element analysis model is then used to associate the frame deformation to a contractile force amplitude. This article shows that the method can be used to measure the contraction force of tissues produced with cells displaying different contractile properties, such as primary skin fibroblasts and myofibroblasts. It can also be used to study the effects of cell culture conditions on tissue contraction, such as serum concentration. This protocol can be easily and affordably applied and tuned to many regenerative medicine applications or contraction-related pathological studies. Impact Statement The protocol presented in this article is a new and simple method to quantify contraction forces present in tissue-engineered substitutes. Using finite element analysis, it allows for the measurement of a contraction force rather than a surface reduction as usually provided by other tissue contraction measurement methods. The results shown are in correlation with the current literature relevant to tissue contraction. It can be easily implemented, and hence, this method will open up new avenues to study tissue contraction of living substitutes engineered with various cell types and to optimize culture conditions.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"547-554"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Biocompatibility Assessment of Decellularized Porcine Uterine Extracellular Matrix-Derived Grafts. 开发脱细胞猪子宫细胞外基质衍生移植物的生物相容性评估。
IF 2.7 4区 医学
Tissue engineering. Part C, Methods Pub Date : 2024-12-01 Epub Date: 2024-10-09 DOI: 10.1089/ten.TEC.2024.0229
Gustavo Henrique Doná Rodrigues Almeida, Mariana Sversut Gibin, Jaqueline de Carvalho Rinaldi, Victória Hellen de Souza Gonzaga, Camila Rodrigues Thom, Rebeca Piatniczka Iglesia, Raquel Souza da Silva, Iorrane Couto Fernandes, Rafael Oliveira Bergamo, Luan Stefani Lima, Beatriz Lopomo, Giovanna Vitória Consani Santos, Thais Naomi Gonçalves Nesiyama, Francielle Sato, Mauro Luciano Baesso, Luzmarina Hernandes, Flávio Vieira Meirelles, Ana Claudia Oliveira Carreira
{"title":"Development and Biocompatibility Assessment of Decellularized Porcine Uterine Extracellular Matrix-Derived Grafts.","authors":"Gustavo Henrique Doná Rodrigues Almeida, Mariana Sversut Gibin, Jaqueline de Carvalho Rinaldi, Victória Hellen de Souza Gonzaga, Camila Rodrigues Thom, Rebeca Piatniczka Iglesia, Raquel Souza da Silva, Iorrane Couto Fernandes, Rafael Oliveira Bergamo, Luan Stefani Lima, Beatriz Lopomo, Giovanna Vitória Consani Santos, Thais Naomi Gonçalves Nesiyama, Francielle Sato, Mauro Luciano Baesso, Luzmarina Hernandes, Flávio Vieira Meirelles, Ana Claudia Oliveira Carreira","doi":"10.1089/ten.TEC.2024.0229","DOIUrl":"10.1089/ten.TEC.2024.0229","url":null,"abstract":"<p><p>Biomaterials derived from biological matrices have been widely investigated due to their great therapeutic potential in regenerative medicine, since they are able to induce cell proliferation, tissue remodeling, and angiogenesis <i>in situ</i>. In this context, highly vascularized and proliferative tissues, such as the uterine wall, present an interesting source to produce acellular matrices that can be used as bioactive materials to induce tissue regeneration. Therefore, this study aimed to establish an optimized protocol to generate decellularized uterine scaffolds (dUT), characterizing their structural, compositional, and biomechanical properties. In addition, <i>in vitro</i> performance and <i>in vivo</i> biocompatibility were also evaluated to verify their potential applications for tissue repair. Results showed that the protocol was efficient to promote cell removal, and dUT general structure and extracellular matrix composition remained preserved compared with native tissue. In addition, the scaffolds were cytocompatible, allowing cell growth and survival. In terms of biocompatibility, the matrices did not induce any signs of immune rejection <i>in vivo</i> in a model of subcutaneous implantation in immunocompetent rats, demonstrating an indication of tissue integration after 30 days of implantation. In summary, these findings suggest that dUT scaffolds could be explored as a biomaterial for regenerative purposes, which is beyond the studies in the reproductive field.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"569-589"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simple Methodology to Score Micropattern Quality and Effectiveness. 对微图案质量和效果进行评分的简单方法。
IF 2.7 4区 医学
Tissue engineering. Part C, Methods Pub Date : 2024-11-01 Epub Date: 2024-09-23 DOI: 10.1089/ten.TEC.2024.0141
Hui Che, Mischa Selig, Jasmin C Lauer, Melanie L Hart, Bernd Rolauffs
{"title":"Simple Methodology to Score Micropattern Quality and Effectiveness.","authors":"Hui Che, Mischa Selig, Jasmin C Lauer, Melanie L Hart, Bernd Rolauffs","doi":"10.1089/ten.TEC.2024.0141","DOIUrl":"10.1089/ten.TEC.2024.0141","url":null,"abstract":"<p><p>Micropatterns (MPs) are widely used as a powerful tool to control cell morphology and phenotype. However, methods for determining the effectiveness of how well cells are controlled by the shape of MPs have been inconsistently used and studies rarely report on this topic, indicating lack of standardization. We introduce an evaluation score that quantitatively assesses the MP fabrication quality and effectiveness, which can be broadly used in conjunction with all currently available MP design types. This score uses four simple and quick steps: (i) scoring MP and (ii) background fabrication quality, (iii) defining the type(s) of MP of interest, and (iv) assigning so-called efficiency descriptors describing cell behavior. These steps are based on visual inspection and quick categorization of various aspects of MP fabrication quality and cell behavior, presented in illustrations and microscopy image examples intended to serve as a reference \"atlas.\" To illustrate the advantage of using this score, we determined differences in cell morphology and F-actin intensity between scored versus nonscored cells. These measurements, which could be different in other studies, were chosen because both are understood as markers of cell phenotype and function. We combined intensity-calibrated immunofluorescence microscopy and image-based single cell protein analysis. Most important, significant differences in cell morphology and cytoskeletal protein content between scored versus nonscored cells were noted: the unconditional inclusion of all experimental read-outs (i.e., all MP data regardless of MP quality and effectiveness) into the final results significantly misjudged the experimental readouts versus only including experimental read-outs of quality-controlled and effective MPs, identified by scoring. Specifically, nonscoring underestimated the F-actin intensity per cell and quantitative cellular morphometric descriptors circularity and solidity and overestimated aspect ratio. Scoring improved the precision of cellular readouts, advocating the use of a MP quality and efficiency score as a quantitative decision-supporting tool in deciding whether or not particular MPs should be used for experiments, saving time and money. This simple scoring methodology can be used for improving MP fabrication, comparing results across studies, benefiting basic science studies and potential future clinical use of MPs by introducing standardization.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"501-511"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Gingival-Derived Mesenchymal Stem Cell Potential in Tissue Engineering and Regenerative Medicine Through Paraprobiotics. 通过副微生物增强 GMSCs 在组织工程和再生医学中的潜力。
IF 2.7 4区 医学
Tissue engineering. Part C, Methods Pub Date : 2024-11-01 Epub Date: 2024-09-12 DOI: 10.1089/ten.TEC.2024.0169
Ensiyeh Kord-Parijaee, Elaheh Ferdosi-Shahandashti, Behnaz Bakhshandeh, Abazar Pournajaf
{"title":"Enhancing Gingival-Derived Mesenchymal Stem Cell Potential in Tissue Engineering and Regenerative Medicine Through Paraprobiotics.","authors":"Ensiyeh Kord-Parijaee, Elaheh Ferdosi-Shahandashti, Behnaz Bakhshandeh, Abazar Pournajaf","doi":"10.1089/ten.TEC.2024.0169","DOIUrl":"10.1089/ten.TEC.2024.0169","url":null,"abstract":"<p><p>Gingival-derived mesenchymal stem cells (GMSCs) stand for a unique source of mesenchymal stem cells (MSCs) isolated from a neural crest origin with potential application in regenerative medicine. However, there are some limitations to the usage of these cells in clinical cell therapy such as reduced cell number and undesirable differentiation of the cell throughout frequent passages. Nowadays, studies have applied manipulation strategies to improve MSCs' effectiveness in clinical therapy. Among all of the materials used for this purpose, there is a growing trend for the use of biomaterials such as probiotic extracts or their conditioned media due to their lower toxicity. In the present study, we utilized extracts from <i>Lactobacillus reuteri</i> and <i>Lactobacillus rhamnosus</i> to assess their potential to enhance the function of GMSCs. We compared the effectiveness of these bacterial extracts to determine their relative efficacy. Bacterial extracts of two lactic acid bacteria were prepared using an ultrasonic homogenizing device. The impact of these bacterial extracts on GMSCs was evaluated through Alizarin Red and Oil Red O staining, cell counting by Trypan Blue staining, and real-time polymerase chain reaction. The findings of our study indicate that the administration of 50 μg/mL <i>L. rhamnosus</i> extract resulted in a greater enhancement of stemness marker expression, osteogenic differentiation, and proliferation of GMSCs compared with an equivalent concentration of <i>L. reuteri</i> extract. Neither of these bacterial extracts revealed any effect on the differentiation of the GMSCs into the adipogenic lineage. These findings suggest that <i>L. rhamnosus</i> extract could be more effective at promoting GMSCs' efficacy in tissue engineering and regenerative medicine.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"512-521"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autoinduction-Based Quantification of In Situ TGF-β Activity in Native and Engineered Cartilage. 基于自诱导的原生软骨和工程软骨原位 TGF-β 活性定量分析
IF 2.7 4区 医学
Tissue engineering. Part C, Methods Pub Date : 2024-11-01 Epub Date: 2024-10-09 DOI: 10.1089/ten.TEC.2024.0190
Tianbai Wang, Sung Yeon Kim, Yifan Peng, Jane Zheng, Matthew D Layne, Joanne E Murphy-Ullrich, Michael B Albro
{"title":"Autoinduction-Based Quantification of <i>In Situ</i> TGF-β Activity in Native and Engineered Cartilage.","authors":"Tianbai Wang, Sung Yeon Kim, Yifan Peng, Jane Zheng, Matthew D Layne, Joanne E Murphy-Ullrich, Michael B Albro","doi":"10.1089/ten.TEC.2024.0190","DOIUrl":"10.1089/ten.TEC.2024.0190","url":null,"abstract":"<p><p>Transforming growth factor beta (TGF-β) is a potent growth factor that regulates the homeostasis of native cartilage and is administered as an anabolic supplement for engineered cartilage growth. The quantification of TGF-β activity in live tissues <i>in situ</i> remains a significant challenge, as conventional activity assessments (e.g., Western blotting of intracellular signaling molecules or reporter cell assays) are unable to measure absolute levels of TGF-β activity in three-dimensional tissues. In this study, we develop a quantification platform established on TGF-β's autoinduction response, whereby active TGF-β (aTGF-β) signaling in cells induces their biosynthesis and secretion of new TGF-β in its latent form (LTGF-β). As such, cell-secreted LTGF-β can serve as a robust, non-destructive, label-free biomarker for quantifying <i>in situ</i> activity of TGF-β in live cartilage tissues. Here, we detect LTGF-β1 secretion levels for bovine native tissue explants and engineered tissue constructs treated with varying doses of media-supplemented aTGF-β3 using an isoform-specific ELISA. We demonstrate that: 1) LTGF-β secretion levels increase proportionally to aTGF-β exposure, reaching 7.4- and 6.6-fold increases in native and engineered cartilage, respectively; 2) synthesized LTGF-β exhibits low retention in both native and engineered cartilage tissue; and 3) secreted LTGF-β is stable in conditioned media for 2 weeks, thus enabling a reliable biological standard curve between LTGF-β secretion and exposed TGF-β activity. Accordingly, we perform quantifications of TGF-β activity in bovine native cartilage, demonstrating up to 0.59 ng/mL in response to physiological dynamic loading. We further quantify the <i>in situ</i> TGF-β activity in aTGF-β-conjugated scaffolds for engineered tissue, which exhibits 1.81 ng/mL of TGF-β activity as a result of a nominal 3 μg/mL loading dose. Overall, cell-secreted LTGF-β can serve as a robust biomarker to quantify <i>in situ</i> activity of TGF-β in live cartilage tissue and can be potentially applied for a wide range of applications, including multiple tissue types and tissue engineering platforms with different cell populations and scaffolds.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"522-532"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信