Development of a Complex Human In Vitro Model of Endochondral Ossification.

IF 2.6 4区 医学 Q3 CELL & TISSUE ENGINEERING
Encheng Ji, Amaia Garmendia Urdalleta, Janneke Witte-Bouma, Gert-Jan Kremers, Nunzia Di Maggio, Andrea Banfi, Eric Farrell, Andrea Lolli
{"title":"Development of a Complex Human <i>In Vitro</i> Model of Endochondral Ossification.","authors":"Encheng Ji, Amaia Garmendia Urdalleta, Janneke Witte-Bouma, Gert-Jan Kremers, Nunzia Di Maggio, Andrea Banfi, Eric Farrell, Andrea Lolli","doi":"10.1177/19373341251378152","DOIUrl":null,"url":null,"abstract":"<p><p>During development and regeneration, bone is formed by endochondral ossification (EO) through the remodeling of a cartilage template. This complex process involves multiple cell types and interactions that cannot currently be modeled <i>in vitro</i>. This study aimed to develop a novel tissue-engineered human <i>in vitro</i> model of certain aspects of the early stages of EO by integrating cartilage which undergoes mineralization, self-assembled vascular networks, and osteoclasts into a single system. We first studied the dynamics of osteoclastogenesis and vascularization in an <i>in vivo</i> model of stromal cell-mediated EO, to inform our <i>in vitro</i> system. Next, we aimed to develop a fully human cell-based three-dimensional model of EO by combining pediatric bone marrow stromal cells differentiating into chondrocytes, osteoclasts derived from human CD14+ monocytes, and human umbilical vein endothelial cells and adipose-derived stromal cells as vessel-forming cells. We investigated how mineralizing cartilage affects osteoclast and vessel formation <i>in vitro</i> through separate cartilage-osteoclasts and cartilage-vessels cocultures. Finally, we combined these elements and established a complex <i>in vitro</i> model that supports the functionality of all these cell types and recapitulates chondrogenesis, cartilage mineralization, vessel formation and osteoclastogenesis. This integrated approach reaches unprecedented complexity and will enable new tissue engineering strategies to model skeletal diseases or cancer metastasis to the bone.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19373341251378152","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

During development and regeneration, bone is formed by endochondral ossification (EO) through the remodeling of a cartilage template. This complex process involves multiple cell types and interactions that cannot currently be modeled in vitro. This study aimed to develop a novel tissue-engineered human in vitro model of certain aspects of the early stages of EO by integrating cartilage which undergoes mineralization, self-assembled vascular networks, and osteoclasts into a single system. We first studied the dynamics of osteoclastogenesis and vascularization in an in vivo model of stromal cell-mediated EO, to inform our in vitro system. Next, we aimed to develop a fully human cell-based three-dimensional model of EO by combining pediatric bone marrow stromal cells differentiating into chondrocytes, osteoclasts derived from human CD14+ monocytes, and human umbilical vein endothelial cells and adipose-derived stromal cells as vessel-forming cells. We investigated how mineralizing cartilage affects osteoclast and vessel formation in vitro through separate cartilage-osteoclasts and cartilage-vessels cocultures. Finally, we combined these elements and established a complex in vitro model that supports the functionality of all these cell types and recapitulates chondrogenesis, cartilage mineralization, vessel formation and osteoclastogenesis. This integrated approach reaches unprecedented complexity and will enable new tissue engineering strategies to model skeletal diseases or cancer metastasis to the bone.

复杂体外人软骨内成骨模型的建立。
在发育和再生过程中,骨是通过软骨模板的重塑形成软骨内成骨(EO)。这个复杂的过程涉及多种细胞类型和相互作用,目前还不能在体外模拟。本研究旨在通过将经历矿化的软骨、自组装血管网络和破骨细胞整合到一个单一系统中,开发一种新的组织工程人体体外模型,以研究早期EO的某些方面。我们首先在基质细胞介导的EO体内模型中研究了破骨细胞发生和血管形成的动力学,为我们的体外系统提供信息。接下来,我们的目标是建立一个完全基于人类细胞的EO三维模型,通过将儿童骨髓基质细胞分化为软骨细胞,人CD14+单核细胞衍生的破骨细胞,人脐静脉内皮细胞和脂肪来源的基质细胞作为血管形成细胞。我们通过分离软骨-破骨细胞和软骨-血管共培养,研究了矿化软骨如何影响体外破骨细胞和血管的形成。最后,我们将这些元素结合起来,建立了一个复杂的体外模型,该模型支持所有这些细胞类型的功能,并概括了软骨形成、软骨矿化、血管形成和破骨细胞发生。这种综合方法达到了前所未有的复杂性,并将使新的组织工程策略能够模拟骨骼疾病或癌症转移到骨骼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue engineering. Part C, Methods
Tissue engineering. Part C, Methods Medicine-Medicine (miscellaneous)
CiteScore
5.10
自引率
3.30%
发文量
136
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues. Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信