Thermochimica Acta最新文献

筛选
英文 中文
Phase change materials encapsulated in graphene hybrid aerogels with high thermal conductivity for efficient solar-thermal energy conversion and thermal management of solar PV panels 石墨烯混合气凝胶中封装的相变材料具有高导热性,可用于太阳能光伏板的高效光热转换和热管理
IF 3.1 2区 化学
Thermochimica Acta Pub Date : 2024-08-22 DOI: 10.1016/j.tca.2024.179853
Fangfang He , Weijie Hong , Zhipeng Liu , Yulin Zhu , Yongsheng Li , Zhuoni Jiang , Zhengguo Chen , Wenbin Yang
{"title":"Phase change materials encapsulated in graphene hybrid aerogels with high thermal conductivity for efficient solar-thermal energy conversion and thermal management of solar PV panels","authors":"Fangfang He ,&nbsp;Weijie Hong ,&nbsp;Zhipeng Liu ,&nbsp;Yulin Zhu ,&nbsp;Yongsheng Li ,&nbsp;Zhuoni Jiang ,&nbsp;Zhengguo Chen ,&nbsp;Wenbin Yang","doi":"10.1016/j.tca.2024.179853","DOIUrl":"10.1016/j.tca.2024.179853","url":null,"abstract":"<div><p>Phase change materials (PCMs) have a wide range of applications in latent heat storage and thermal management. However, their practical use is hindered by high leakage rates and low thermal conductivity. To address these issues, polyvinyl alcohol/carboxylated carbon nanotubes/graphene hybrid aerogels (PCG) were carbonized at high temperatures to obtain polyvinyl alcohol/carboxylated carbon nanotubes/graphene carbon aerogels (cPCG). Polyethylene glycol (PEG) was then encapsulated within cPCG to form cPCG@PEG shape-stabilized PCMs (SSPCMs). These cPCG@PEG SSPCMs demonstrated excellent thermal conductivity (0.843 W•m<sup>-1</sup>•K<sup>-1</sup>) and superior solar-thermal conversion performance (91.8%). Additionally, the latent heat of cPCG@PEG showed a minimal decrease even after 100 melt-crystallization cycles. An experimental setup was designed to regulate the temperature of solar photovoltaic (PV) panels using cPCG@PEG. The results indicated that cPCG@PEG effectively managed the temperature of solar PV panels under varying light conditions. This study presents a novel approach for enhancing the application of porous PCMs in solar energy utilization and thermal management of equipment.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179853"},"PeriodicalIF":3.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142075681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the curing kinetics of Acrolein-Pentaerythritol resin: Impact of molecular weight and molecular weight distribution on cure behavior 探索丙烯醛-季戊四醇树脂的固化动力学:分子量和分子量分布对固化行为的影响
IF 3.1 2区 化学
Thermochimica Acta Pub Date : 2024-08-15 DOI: 10.1016/j.tca.2024.179851
Qian Yu, Qihui Zeng, Lichun Jiang, Jianjun Li, Fang Yang, Gang Li, Jie Chen, Chuande Zhao
{"title":"Exploring the curing kinetics of Acrolein-Pentaerythritol resin: Impact of molecular weight and molecular weight distribution on cure behavior","authors":"Qian Yu,&nbsp;Qihui Zeng,&nbsp;Lichun Jiang,&nbsp;Jianjun Li,&nbsp;Fang Yang,&nbsp;Gang Li,&nbsp;Jie Chen,&nbsp;Chuande Zhao","doi":"10.1016/j.tca.2024.179851","DOIUrl":"10.1016/j.tca.2024.179851","url":null,"abstract":"<div><p>Curing kinetics are crucial for designing and optimizing the process parameters of a resin. This study examines the non-isothermal curing kinetics of acrolein-pentaerythritol (APE) resins, focusing on the impact of molecular weight (MW) and molecular weight distribution (MWD) on their cure behavior. Kinetic parameters were determined using isoconversional and combined kinetic analysis methods through microcalorimeter measurements. The findings suggest that the cure process follows the nucleation and growth models (Avrami−Erofeev equation), with an activation energy of 72.2 kJ/mol. A comparison of two APE resins with different molecular weights and molecular weight distributions reveals that higher MW components expedite the initial curing reaction but impede the main curing process, leading to extended curing durations. This study provides valuable insights into the curing kinetics of APE resin and the influence of MW and MWD, contributing to the reliable and reproducible production of composite parts.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179851"},"PeriodicalIF":3.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic investigation of aschalcha heavy oil oxidation in the presence of cobalt biocatalysts during in-situ combustion 原位燃烧过程中钴生物催化剂存在下的阿斯哈尔查重油氧化动力学研究
IF 3.1 2区 化学
Thermochimica Acta Pub Date : 2024-08-14 DOI: 10.1016/j.tca.2024.179854
Mohammed A. Khelkhal , Olga V. Ostolopovskaya , Aleksey V. Dengaev , Alexey V. Vakhin
{"title":"Kinetic investigation of aschalcha heavy oil oxidation in the presence of cobalt biocatalysts during in-situ combustion","authors":"Mohammed A. Khelkhal ,&nbsp;Olga V. Ostolopovskaya ,&nbsp;Aleksey V. Dengaev ,&nbsp;Alexey V. Vakhin","doi":"10.1016/j.tca.2024.179854","DOIUrl":"10.1016/j.tca.2024.179854","url":null,"abstract":"<div><p>The catalytic effect of cobalt tall oil and cobalt sunflower oil catalysts on the oxidation kinetics of heavy crude oil was investigated in this study. Comprehensive kinetic analyses, employing differential scanning calorimetry, thermogravimetric analysis, and kinetic modeling techniques, revealed that the presence of these catalysts significantly influenced the oxidation behavior of heavy oil. The catalysts exhibited pronounced shifts in the DSC and TG curves towards lower temperatures, indicating facilitated initiation of oxidation reactions at lower onset temperatures. Quantitative kinetic parameters, including activation energies and frequency factors, were determined using the Friedman and Kissinger-Akahira-Sunose analyses. The cobalt tall oil catalyst demonstrated superior performance, effectively lowering the activation energy barrier and increasing oxidation rates, particularly at higher conversion degrees. Catalyst characterization techniques, including X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy, revealed the formation of highly crystalline cobalt oxide nanoparticles with optimal dispersion and size distribution, as well as the presence of favorable functional groups for surface interactions. The results elucidated the role of these catalysts in facilitating the oxidation process through the provision of active sites, altered reaction pathways, favorable steric environments, and efficient oxygen activation capabilities. These findings contribute to the development of efficient catalytic systems for heavy oil upgrading processes and offer insights for further optimization of catalyst properties to achieve desired oxidation kinetics behavior.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179854"},"PeriodicalIF":3.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142075680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting high-energy X-ray diffraction and differential scanning calorimetry data of EN AW-6082 with mean field simulations 利用平均场模拟重新审视 EN AW-6082 的高能 X 射线衍射和差示扫描量热数据
IF 3.1 2区 化学
Thermochimica Acta Pub Date : 2024-08-08 DOI: 10.1016/j.tca.2024.179848
Robert Kahlenberg , Roman Schuster , Nicolás García Arango , Georg Falkinger , Andreas Stark , Benjamin Milkereit , Ernst Kozeschnik
{"title":"Revisiting high-energy X-ray diffraction and differential scanning calorimetry data of EN AW-6082 with mean field simulations","authors":"Robert Kahlenberg ,&nbsp;Roman Schuster ,&nbsp;Nicolás García Arango ,&nbsp;Georg Falkinger ,&nbsp;Andreas Stark ,&nbsp;Benjamin Milkereit ,&nbsp;Ernst Kozeschnik","doi":"10.1016/j.tca.2024.179848","DOIUrl":"10.1016/j.tca.2024.179848","url":null,"abstract":"<div><p>The present work re-evaluates previously published in-situ high-energy x-ray diffraction (HEXRD) and differential scanning calorimetry (DSC) data on EN AW-6082, which were used to study the precipitation kinetics of stable β-Mg<sub>2</sub>Si. Here, we address hitherto unattended information in the diffraction patterns. The revised analysis considers metastable precipitates and thermodynamically stable Fe-containing phases in addition to stable β-Mg<sub>2</sub>Si investigated in the previous studies. Furthermore, we utilize mean-field simulations to convert the evolution of individual phases obtained from HEXRD data into an equivalent excess specific heat <span><math><msubsup><mi>c</mi><mrow><mi>p</mi></mrow><mtext>ex</mtext></msubsup></math></span> signal. This methodology allows us to partly separate cooling and heating DSC data into the contributions of individual phases and make a quantitative comparison between results from HEXRD and DSC. This significantly improves our current understanding of DSC data and demonstrates, for instance, the difference in complexity between interpreting cooling and heating experiments in aluminum alloys.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179848"},"PeriodicalIF":3.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040603124001874/pdfft?md5=810ec089b15f73dde5b90b92acdff42f&pid=1-s2.0-S0040603124001874-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid and crystallized phases stability in the sub-system H3PO4H4P2O7: Experimental determination and modeling 子系统 H3PO4[sbnd]H4P2O7 中液相和结晶相的稳定性:实验测定和模型建立
IF 3.1 2区 化学
Thermochimica Acta Pub Date : 2024-08-06 DOI: 10.1016/j.tca.2024.179837
Mohamed Mouhib , Rodica Chiriac , François Toche , Jean-Jacques Counioux , Joseph Saab , Mohammed Kaddami , Christelle Goutaudier
{"title":"Liquid and crystallized phases stability in the sub-system H3PO4H4P2O7: Experimental determination and modeling","authors":"Mohamed Mouhib ,&nbsp;Rodica Chiriac ,&nbsp;François Toche ,&nbsp;Jean-Jacques Counioux ,&nbsp;Joseph Saab ,&nbsp;Mohammed Kaddami ,&nbsp;Christelle Goutaudier","doi":"10.1016/j.tca.2024.179837","DOIUrl":"10.1016/j.tca.2024.179837","url":null,"abstract":"<div><p>The study of the system formed by ortho- and pyrophosphoric acid was resumed in order to understand the crystallization conditions of these two compounds and to highlight the existence of their possible polymorphism. To this end, the solid-liquid equilibria (SLE) of pyrophosphoric acid was studied in depth. Contradictions in literature data were resolved through systematic experimentation: solubility measurements, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Calorimetric measurements confirmed the existence of two crystalline forms of pyrophosphoric acid, and their stability domains were determined. Furthermore, thermodynamic modeling of the SLE has led to a consistent and refined representation of the observed phenomena. In particular, the transition temperature from low-temperature (form I) to high-temperature form (form II) of pyrophosphoric acid was determined at 298.4 K and the coordinates of the eutectic point common between H<sub>3</sub>PO<sub>4</sub> and H<sub>4</sub>P<sub>2</sub>O<sub>7</sub> (I) were precisely determined. Modeling also confirms the non-negligible quantity of triphosphoric acid in the liquid state throughout virtually the entire compositional range. Finally, X-ray powder diffraction data were used to determine the cell parameters and space group of pyrophosphoric acid using EXPO 2014 software.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179837"},"PeriodicalIF":3.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An innovative method for isothermal and non-isothermal predictions of complex reactions 用于复杂反应等温和非等温预测的创新方法
IF 3.1 2区 化学
Thermochimica Acta Pub Date : 2024-08-05 DOI: 10.1016/j.tca.2024.179839
Alireza Aghili , Amir Hossein Shabani , Vahid Arabli
{"title":"An innovative method for isothermal and non-isothermal predictions of complex reactions","authors":"Alireza Aghili ,&nbsp;Amir Hossein Shabani ,&nbsp;Vahid Arabli","doi":"10.1016/j.tca.2024.179839","DOIUrl":"10.1016/j.tca.2024.179839","url":null,"abstract":"<div><p>In this study, we introduced a novel technique that factorizes the reaction rate of complex reactions into a temperature-dependent rate constant and a conversion function using multiple linear regression on isoconversional kinetic data. In simulated reactions, our method demonstrated higher accuracy compared to model-free approaches. Furthermore, the new method exhibited satisfactory accuracy in non-isothermal predictions of polyethylene thermal decomposition, all without necessitating the computation of Arrhenius parameters. However, the new method enables the assessment of the Arrhenius parameters, the activation energy and pre-exponential factor, in complex reactions as well. The accuracy of this method is confined to the experimentally explored temperature range, necessitating cautious extrapolation for temperatures beyond this interval.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179839"},"PeriodicalIF":3.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vaporization thermodynamics of normal alkyl azides 正烷基叠氮化物的汽化热力学
IF 3.1 2区 化学
Thermochimica Acta Pub Date : 2024-08-05 DOI: 10.1016/j.tca.2024.179840
Dmitrii N. Bolmatenkov, Ilyas I. Nizamov, Roman P. Aleshin, Andrey V. Galukhin, Mikhail I. Yagofarov, Boris N. Solomonov
{"title":"Vaporization thermodynamics of normal alkyl azides","authors":"Dmitrii N. Bolmatenkov,&nbsp;Ilyas I. Nizamov,&nbsp;Roman P. Aleshin,&nbsp;Andrey V. Galukhin,&nbsp;Mikhail I. Yagofarov,&nbsp;Boris N. Solomonov","doi":"10.1016/j.tca.2024.179840","DOIUrl":"10.1016/j.tca.2024.179840","url":null,"abstract":"<div><p>Two <em>n</em>-alkyl azides, <em>n</em>-tetradecyl- and <em>n</em>-octadecyl azides, were synthesized and characterized by differential scanning calorimetry and fast scanning calorimetry. Based on the experiments performed, the enthalpies and temperatures of solid-solid transitions and fusion, condensed phase heat capacities, vapor pressures above the liquids, and vaporization enthalpies were obtained, and temperature limits of stability were determined. Combining the newly obtained and existing literature data on the vaporization characteristics of <em>n-</em>alkyl azides, the linear dependences of the vaporization enthalpy and the natural logarithm of vapor pressure on the chain length were derived at 298.15 K and the <em>p</em>-<em>T</em> properties of unstudied members of homologous series were predicted.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179840"},"PeriodicalIF":3.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing the effect of annealing at Tg on the crystal growth in Au49Ag5.5Pd2.3Cu26.9Si16.3 metallic glass via nanocalorimetry 通过纳米焦度计揭示退火温度对 Au49Ag5.5Pd2.3Cu26.9Si16.3 金属玻璃晶体生长的影响
IF 3.1 2区 化学
Thermochimica Acta Pub Date : 2024-08-03 DOI: 10.1016/j.tca.2024.179835
Chenhui Wang , Luojia Zhang , Jintao Luo , Bingjia Wu , Jun Yi , Yulai Gao , Bingge Zhao
{"title":"Revealing the effect of annealing at Tg on the crystal growth in Au49Ag5.5Pd2.3Cu26.9Si16.3 metallic glass via nanocalorimetry","authors":"Chenhui Wang ,&nbsp;Luojia Zhang ,&nbsp;Jintao Luo ,&nbsp;Bingjia Wu ,&nbsp;Jun Yi ,&nbsp;Yulai Gao ,&nbsp;Bingge Zhao","doi":"10.1016/j.tca.2024.179835","DOIUrl":"10.1016/j.tca.2024.179835","url":null,"abstract":"<div><p>In this study, Au<sub>49</sub>Ag<sub>5.5</sub>Pd<sub>2.3</sub>Cu<sub>26.9</sub>Si<sub>16.3</sub> metallic glass is annealed at <em>T</em><sub>g</sub> and its impact on crystal growth is demonstrated with nanocalorimetry. With annealing following the rapid quenching, an amorphous phase free of nuclei, a relaxed amorphous phase, an amorphous phase with nuclei, and an amorphous phase with crystals are sequentially produced. With the reheating at rates ranging from 100 to 50,000 K/s, these four stages are quantitatively distinguished. Additionally, crystal growth behaviors of these four stages are demonstrated by the Kissinger and Mauro-Yue-Ellison-Gupta-Allan model. For the quenched and relaxed amorphous phases, the apparent crystallization activation energy (<em>E</em><sub>a</sub>) decreases with increasing heating rate, with a noticeable upward deviation at ultrahigh heating rates. When nuclei and crystals form in the amorphous phase, <em>E</em><sub>a</sub> keeps decreasing with the heating rate. As the annealing time increases, the maximum growth rate (<em>u</em><sub>max</sub>) exhibits a monotonic increase while the temperature corresponding to <em>u</em><sub>max</sub> displays a maximum.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179835"},"PeriodicalIF":3.1,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrate phase equilibrium measurement of 50 mol.% carbon dioxide / 33 mol.% dimethyl ether / 17 mol.% propane in the presence of tetrahydrofuran, cyclopentane, tetra‑n‑butylammonium bromide, and tetra‑n‑butylammonium chloride 在有四氢呋喃、环戊烷、四正丁基溴化铵和四正丁基氯化铵存在的情况下,对 50 摩尔二氧化碳/33 摩尔二甲醚/17 摩尔丙烷的水合物相平衡进行测量
IF 3.1 2区 化学
Thermochimica Acta Pub Date : 2024-08-03 DOI: 10.1016/j.tca.2024.179838
Kai Guo, Sizhe Zhou, Wenxiang Zhang, Yonghuan Zang, Zhiqiang Ma, Zhihan Yang, Qing Xiao
{"title":"Hydrate phase equilibrium measurement of 50 mol.% carbon dioxide / 33 mol.% dimethyl ether / 17 mol.% propane in the presence of tetrahydrofuran, cyclopentane, tetra‑n‑butylammonium bromide, and tetra‑n‑butylammonium chloride","authors":"Kai Guo,&nbsp;Sizhe Zhou,&nbsp;Wenxiang Zhang,&nbsp;Yonghuan Zang,&nbsp;Zhiqiang Ma,&nbsp;Zhihan Yang,&nbsp;Qing Xiao","doi":"10.1016/j.tca.2024.179838","DOIUrl":"10.1016/j.tca.2024.179838","url":null,"abstract":"<div><p>Hydrate-based cold storage and refrigeration offer notable efficiency and safety advantages. By leveraging the high cold storage density of CO<sub>2</sub> hydrate and the low phase equilibrium pressure and GWP of DME and C<sub>3</sub>H<sub>8</sub> hydrates, a gas mixture hydrate (50 mol.% CO<sub>2</sub>, 33 mol.% DME, 17 mol.% C<sub>3</sub>H<sub>8</sub>) was used as a refrigerant for phase equilibrium assessment. Results showed phase equilibrium temperatures of 274.5 to 278.9 K at pressures from 0.4 to 0.86 MPa, aligning with conventional air conditioning pressures. Additives like THF, CP, TBAB, and TBAC improved conditions. Liquid promoters (THF, CP) increased temperatures by 4.5 to 7.9 K, while solid promoters (TBAB, TBAC) raised them by 5.3 to 11.1 K. Liquid promoters shifted the phase equilibrium curve for CO<sub>2</sub>-DME-C<sub>3</sub>H<sub>8</sub> hydrate almost parallel to the right, while solid promoters steepened the curve slope. A predictive model was developed, showing good molar phase change enthalpy.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179838"},"PeriodicalIF":3.1,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the dynamic heating polymerization of PA MXD6: From thermal analysis to efficient polymerization PA MXD6 的动态加热聚合研究:从热分析到高效聚合
IF 3.1 2区 化学
Thermochimica Acta Pub Date : 2024-08-02 DOI: 10.1016/j.tca.2024.179833
Yongchang Cheng, Tonghui Yang, Yanpeng Wu, Tao Huang, Bin Yu, Meifang Zhu, Hao Yu
{"title":"Study on the dynamic heating polymerization of PA MXD6: From thermal analysis to efficient polymerization","authors":"Yongchang Cheng,&nbsp;Tonghui Yang,&nbsp;Yanpeng Wu,&nbsp;Tao Huang,&nbsp;Bin Yu,&nbsp;Meifang Zhu,&nbsp;Hao Yu","doi":"10.1016/j.tca.2024.179833","DOIUrl":"10.1016/j.tca.2024.179833","url":null,"abstract":"<div><p>Optimizing a practical polymerization strategy for poly(m-xylylene adipamide) (PA MXD6) requires regulating the high-temperature residence time and preventing the solidification of the reaction mixture. Dynamic heating strategies have shown promise in addressing this issue. However, conventional polycondensation kinetics are not optimal for characterizing nonisothermal processes due to continuous changes in the reactant state. This study employed thermal analysis as a continuous monitoring method to comprehensively investigate the effects of pressure, temperature, and diffusion on polymerization. The results indicate that high heating rates lead to faster reaction rates, as evidenced by the evolution of the kinetic parameters throughout the reaction process. Nevertheless, excessively high heating rates increase the solidification risk. To resolve this contradiction, a low-rate heating process with pressure was developed for efficient polymerization and scale-up, resulting in superior products. This study provides new insights into polyamide polymerization and offers practical guidelines for enhancing polymerization efficiency and process stability.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179833"},"PeriodicalIF":3.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信