Kirill T. Kalinin , Dmitry R. Streltsov , Petr V. Dmitryakov , Nikita G. Sedush , Sergei N. Chvalun
{"title":"Kinetics of L-lactide bulk polymerization initiated with zirconium(IV) acetylacetonate studied by non-isothermal differential scanning calorimetry","authors":"Kirill T. Kalinin , Dmitry R. Streltsov , Petr V. Dmitryakov , Nikita G. Sedush , Sergei N. Chvalun","doi":"10.1016/j.tca.2024.179872","DOIUrl":"10.1016/j.tca.2024.179872","url":null,"abstract":"<div><div>The kinetics of L-lactide bulk polymerization initiated with a non-toxic initiator, zirconium(IV) acetylacetonate, was studied by non-isothermal differential scanning calorimetry. The polymerization kinetics was analyzed using a combination of isoconversional “model–free” and model–fitting methods. It was revealed that the model–free analysis results in an autocatalytic reaction model function. To provide a physical meaning for this effective reaction model, a model–fitting analysis with a two–step kinetic model taking into account irreversible initiation and reversible propagation reactions was applied. It was demonstrated, that even such simple multi–step kinetic model can explain the general features of the polymerization reaction revealed by the isoconversional analysis, i.e. a variation of the effective activation energy with a conversion degree and an autocatalytic character of the effective reaction model. The rate constants for the initiation, <span><math><msub><mi>k</mi><mi>i</mi></msub></math></span>, and propagation, <span><math><msub><mi>k</mi><mi>p</mi></msub></math></span>, reactions were evaluated. It was revealed that the values of <span><math><msub><mi>k</mi><mi>i</mi></msub></math></span> are about two decimal orders lower than that of <span><math><msub><mi>k</mi><mi>p</mi></msub></math></span> indicating slow initiation in the studied temperature range.</div></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"742 ","pages":"Article 179872"},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bingtao Wang , Yanqun Pan , Liping Zhao , Juan Li , Zhenghong Guo
{"title":"Kinetics and mechanism of thermal and thermo-oxidative degradation for high-density polyethylene modified by fullerene and its derivative","authors":"Bingtao Wang , Yanqun Pan , Liping Zhao , Juan Li , Zhenghong Guo","doi":"10.1016/j.tca.2024.179871","DOIUrl":"10.1016/j.tca.2024.179871","url":null,"abstract":"<div><div>To investigate the effect of fullerene (C<sub>60</sub>) and its iron compound (C<sub>60</sub>-Fe) on the thermal and thermo-oxidative degradation mechanism of high-density polyethylene (HDPE), the Kissinger method, Flynn-Wall-Ozawa method and Coats-Redfern methods are used. The data of thermal and thermo-oxidative degradation are achieved through the thermogravimetric (TG) analysis, and the trapping free-radical ability and the dispersion of C<sub>60</sub> or C<sub>60</sub>-Fe in matrix are characterized by the electron spin resonance (ESR) and transmission electron microscopy (TEM). C<sub>60</sub> and C<sub>60</sub>-Fe improve effectively the thermal and thermo-oxidative stability of HDPE. In N<sub>2</sub>, C<sub>60</sub> and C<sub>60</sub>-Fe do not change the degradation mechanism of HDPE, and the degradation rate is determined by the random generation and growth of free-radicals. In air, C<sub>60</sub> changes the reaction order (<em>n</em>) of HDPE at the oxidation stage and the degradation mechanism at the random fracture. C<sub>60</sub>-Fe changes the thermo-oxidative mechanism of HDPE due to the formation of cross-linked network.</div></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"742 ","pages":"Article 179871"},"PeriodicalIF":3.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoqi Zhang , Haoyu Yang , Yaxin Guo , Jie Zhou , Hao Liu , Suqin He , Miaoming Huang , Wanlin Xu , Chengshen Zhu , Wentao Liu
{"title":"Pyrolysis kinetics and flame retardant enhancement of bio-based polyamide 56/6","authors":"Xiaoqi Zhang , Haoyu Yang , Yaxin Guo , Jie Zhou , Hao Liu , Suqin He , Miaoming Huang , Wanlin Xu , Chengshen Zhu , Wentao Liu","doi":"10.1016/j.tca.2024.179869","DOIUrl":"10.1016/j.tca.2024.179869","url":null,"abstract":"<div><div>The development of polyamide materials with fire safety is of great importance at this stage. A novel nitrogen-phosphorus bisystem flame retardant (MC) with a multi-branched structure was synthesized and applied to a new bio-based polyamide 56/6 (PA56/6). Notably, at 8 wt% MC content, flame-retardant PA56/6@MC<sub>8%</sub> (FRPA56/6@MC<sub>8%</sub>) achieved an Limiting Oxygen Index (LOI) of 26.6% and a V-0 rating in UL-94 tests. Cone calorimetry results indicated that FRPA56/6@MC<sub>8%</sub> exhibited a 22.9% reduction in total heat release (THR) and a 41.0% decrease in peak heat release rate (PHRR), underscoring the flame retardancy promotion by MC in PA56/6. The study further explored the pyrolysis kinetics and mechanisms of polyamide materials, offering insights crucial for flame-retardant modifications. Overall, the findings present an innovative strategy for enhancing the flame retardant properties of PA56/6, potentially applicable in automotive components and other pertinent fields.</div></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179869"},"PeriodicalIF":3.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mauro R.S. Silveira , Vicente F. Moritz , Carlos A. Ferreira , Laurent Ferry , José-Marie Lopez-Cuesta
{"title":"Flammability of Novolac epoxy cured with aromatic diamines","authors":"Mauro R.S. Silveira , Vicente F. Moritz , Carlos A. Ferreira , Laurent Ferry , José-Marie Lopez-Cuesta","doi":"10.1016/j.tca.2024.179870","DOIUrl":"10.1016/j.tca.2024.179870","url":null,"abstract":"<div><div>The modification of Novolac epoxy with the organophosphorus compound 9,10-dihydro-9-oxa-10-phosphaphenanthren-10-oxide (DOPO) to reduce flammability and its influence on curing reactions has been investigated. Three aromatic diamine curing agents were used, namely 4,4′-diaminodiphenylmethane (DDM), 4,4′-diaminodiphenylsulphone (DDS), and diethyltoluenediamine (DETDA). The thermal stability and dynamic-mechanical behaviour of the cured resin depend on interactions of the curing agent with DOPO. The onset degradation temperature decreased with increasing phosphorus content, indicating the influence of DOPO on thermal stability. The DDM 3 %P sample exhibited the highest glass transition (Tg) of 136 °C, while DDS-crosslinked simples displayed the highest Tg of 147 °C among all samples. An improvement in the reaction of Novolac epoxy to fire was achieved by incorporating DOPO compound, as indicated by cone calorimetry results, showing up to a 67 % reduction in the peak heat release rate (pHRR) and 53 % reduction in total heat release (THR) for DDM 3 %P. The modified samples containing DOPO presented a self-extinguishing performance, displaying a UL-94 V-0 rating and a limiting oxygen index (LOI) values reached a maximum of 37.1 % for DDM 3 %P, with less flame propagation than for neat Novolac epoxy.</div></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179870"},"PeriodicalIF":3.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timur A. Mukhametzyanov , Airat A. Notfullin , Alisa A. Fatkhutdinova , Christoph Schick
{"title":"Organic compounds as temperature calibrants for fast scanning calorimetry","authors":"Timur A. Mukhametzyanov , Airat A. Notfullin , Alisa A. Fatkhutdinova , Christoph Schick","doi":"10.1016/j.tca.2024.179868","DOIUrl":"10.1016/j.tca.2024.179868","url":null,"abstract":"<div><p>Organic compounds can be used as temperature calibrants in fast scanning calorimetry. Their advantages include ease of surface cleaning of the calorimetric chip and good thermal contact with the chip surface. Among several compounds tested, benzoic acid was identified as a convenient and reliable calibrant for temperatures below approximately 130 °C. However, organic calibrants often exhibit unusual heating rate dependencies of the onset temperatures of melting. This phenomenon can be semi-quantitatively explained by considering different heat flows within the sensor. Notably, the thermal resistance between the heater and thermopile, often overlooked, introduces an additional time constant that can sometimes result in a negative apparent thermal lag. In addition, the onset temperatures are influenced by factors such as sample position, thickness, surface wetting, and spreading. These factors limit the accuracy of transition temperature determinations to approximately ±1 K below 130 °C and ±5 K up to 220 °C.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179868"},"PeriodicalIF":3.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Secondary crystallization of low-isotacticity polypropylene","authors":"Yoshitomo Furushima , Akihiko Toda , Kazuo Kimura , Masaru Nakada , Akihiro Masuda , Kazuya Nakamura , Hideaki Takahashi , Toshiumi Tatsuki , Kazuma Okada , Masatoshi Ohkura","doi":"10.1016/j.tca.2024.179867","DOIUrl":"10.1016/j.tca.2024.179867","url":null,"abstract":"<div><p>This study aimed to clarify the secondary crystallization process of low-isotacticity polypropylene (LT-PP). LT-PP demonstrates an exceptionally low crystallization rate at room temperature, which is approximately 1/5000 lower than that of isotactic PP (iPP). During the secondary crystallization of LT-PP at 30 °C, the thickness of lamellar (c-axis) and a- and b-axes of crystallite size remained constant. In addition, no significant change was observed in the C<img>C-C bending vibration. It seems that the direction of the C<img>C-C molecular order is similar to the thickness direction. This vibration mode may be associated with changes in the thickness of the lamellae. To explain the log(<em>t</em>) dependence of crystallinity, the Seto–Frank model was employed.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179867"},"PeriodicalIF":3.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Žaneta Dohnalová, Jan Hroch, Nataliia Reinders, Jana Luxová, Petra Šulcová
{"title":"Doping SrSnO3 perovskite with transition metals: Synthesis of double hydroxides, thermal decomposition, and pigment potential","authors":"Žaneta Dohnalová, Jan Hroch, Nataliia Reinders, Jana Luxová, Petra Šulcová","doi":"10.1016/j.tca.2024.179864","DOIUrl":"10.1016/j.tca.2024.179864","url":null,"abstract":"<div><p>The primary objective of this research is to explore the feasibility of synthesizing phase-pure perovskite SrSnO<sub>3</sub> doped with transition metals and to evaluate the potential of these products as high-temperature inorganic pigments. The initial step in preparing perovskite powders with the general formula SrSn<sub>0.95</sub>M<sub>0.05</sub>O<sub>3-δ</sub> (<em>M</em> = Mn, Fe, Co, Ni) involved synthesizing SrSn<sub>0.95</sub>M<sub>0.05</sub>(OH)<sub>6</sub> followed by its thermal decomposition. The thermal decomposition processes and the reaction pathway for perovskite formation were analyzed using thermal analysis and X-ray diffraction analysis. Single-phase products of beige SrSn<sub>0.95</sub>Fe<sub>0.05</sub>O<sub>3-δ</sub> and brown SrSn<sub>0.95</sub>Co<sub>0.05</sub>O<sub>3-δ</sub> were successfully obtained by calcining the precursors at 1,100 °C. In contrast, brown SrSn<sub>0.95</sub>Mn<sub>0.05</sub>O<sub>3-δ</sub> contained a phase impurity of SnO<sub>2</sub> and doping with Ni ions resulted in a phase mixture of SrSnO<sub>3</sub> and NiO. The pigment quality of the powders was assessed based on their color parameters, described using the CIE Lab system.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179864"},"PeriodicalIF":3.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermal conductivity of epoxy/multilayered graphene composites prepared with different curing agents","authors":"Miyuki Harada, Masafumi Horimoto, Tomoki Tsukuda","doi":"10.1016/j.tca.2024.179866","DOIUrl":"10.1016/j.tca.2024.179866","url":null,"abstract":"<div><p>Epoxy/multilayer graphene (ML-graphene) composites were prepared using different curing agents to control the graphene dispersion by changing the curing reactivity. With increasing initial reactivity, the aggregation size of the ML-graphene decreased and their thermal conductivity increased. In particular, the thermal conductivity of the composite prepared with <em>p</em>-phenylenediamine showed a maximum value of 1.46 W/(m·K) at 25 wt% ML-graphene loading because of the highest initial curing reactivity. The application of a magnetic field led to graphene alignment along the applied field, resulting in two times higher thermal conductivity than that of the corresponding system without magnetic field. The relationship between the interfacial affinity for epoxy/graphene and thermal conductivity was also investigated. As a result, resulting in a biphenyl epoxy composite showed higher thermal conductivity (6.17 W/(m·K)) than that of the bisphenol-A epoxy composite. This is derived that the π-conjugated and planar structure of biphenyl epoxy can easily interact with the surface of graphene.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179866"},"PeriodicalIF":3.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental investigation and thermodynamic modeling for isobaric heat capacity of ethanol at elevated temperatures and pressures","authors":"Lingyan Gui , Jian Yang , Jiangtao Wu , Xianyang Meng","doi":"10.1016/j.tca.2024.179865","DOIUrl":"10.1016/j.tca.2024.179865","url":null,"abstract":"<div><p>Ethanol is a promising sustainable fuel for its environmental friendliness and renewability. Due to the association effect in ethanol molecules, the particular behavior in isobaric heat capacity was explored by combining experimental and theoretical methods. Experimental isobaric heat capacity measurements of ethanol were performed over the temperature range from (298.15 to 573.15) K and at pressures up to 15 MPa in both liquid and vapor phases by a flow calorimeter. Different association schemes were combined respectively with PC-SAFT equation of state and SAFT-VR Mie equation of state to compare their accuracy in isobaric heat capacity prediction, and it could be concluded that two-site (2B) model was better than three-site (3B) model. It was also found that PC-SAFT equation of state was able to yield good results in predicting the isobaric heat capacity far from the saturated state and critical region, however, SAFT-VR Mie equation of state showed better prediction performance near the saturated state and critical region.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179865"},"PeriodicalIF":3.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermotropic phase behavior, structure and supramolecular organization of N, O-diacyl-β-alaninols with matched N- and O-acyl chains (n = 9-18)","authors":"Dokku Sivaramakrishna , Konga Manasa , Gowri Sankar Reddipalli , Musti J. Swamy","doi":"10.1016/j.tca.2024.179852","DOIUrl":"10.1016/j.tca.2024.179852","url":null,"abstract":"<div><p>The thermotropic phase behavior, molecular structure and supramolecular organization of a homologous series of <em>N,O</em>-diacyl-β-alaninols (DABAOHs) with matched acyl chains (C9-C18) are reported. The C9-C11 DABAOHs showed a single thermotropic transition in DSC studies, whereas the longer chainlength compounds gave two transitions. Transition temperatures, enthalpies and entropies of the DABAOHs exhibited odd-even alternation, suggesting minor differences in the packing of odd- and even chain length compounds. Crystal structure of <em>N,O</em>-didecanoyl-β-alaninol revealed a bent geometry, with several N-H···O and C-H···O hydrogen bonds stabilizing the molecular packing. Powder X-ray diffraction studies suggested that all DABAOHs are packed in a tilted bilayer mode. These results provide a thermodynamic and structural basis for investigating the structure-function relationships of <em>N,O</em>-diacyl-β-alaninols.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179852"},"PeriodicalIF":3.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}