Yanqi Liu, Keyang Liu, Zhaoyang Li, Y. Leng, Ruxin Li
{"title":"Coherently tiled Ti:sapphire laser amplification: a way to break the 10 petawatt limit on current ultraintense lasers","authors":"Yanqi Liu, Keyang Liu, Zhaoyang Li, Y. Leng, Ruxin Li","doi":"10.1117/1.APN.2.6.066009","DOIUrl":"https://doi.org/10.1117/1.APN.2.6.066009","url":null,"abstract":"Abstract. After reaching a world record of 10 PW, the peak power development of the titanium-sapphire (Ti:sapphire) PW ultraintense lasers has hit a bottleneck, and it seems to be difficult to continue increasing due to the difficulty of manufacturing larger Ti:sapphire crystals and the limitation of parasitic lasing that can consume stored pump energy. Unlike coherent beam combining, coherent Ti:sapphire tiling is a viable solution for expanding Ti:sapphire crystal sizes, truncating transverse amplified spontaneous emission, suppressing parasitic lasing, and, importantly, not requiring complex space-time tiling control. A theoretical analysis of the above features and an experimental demonstration of high-quality laser amplification are reported. The results show that the addition of a 2×2 tiled Ti:sapphire amplifier to today’s 10 PW ultraintense laser is a viable technique to break the 10 PW limit and directly increase the highest peak power recorded by a factor of 4, further approaching the exawatt class.","PeriodicalId":223078,"journal":{"name":"Advanced Photonics Nexus","volume":"69 1","pages":"066009 - 066009"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139292590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-Hang Liu, A. Kurnikov, Weiye Li, P. Subochev, D. Razansky
{"title":"Highly sensitive miniature needle PVDF-TrFE ultrasound sensor for optoacoustic microscopy","authors":"Yu-Hang Liu, A. Kurnikov, Weiye Li, P. Subochev, D. Razansky","doi":"10.1117/1.apn.2.5.056006","DOIUrl":"https://doi.org/10.1117/1.apn.2.5.056006","url":null,"abstract":". A wideband sensitive needle ultrasound sensor based on a polarized PVDF-TrFE copolymer piezoelectric film has been developed, which is capable of providing a noise equivalent pressure of 14 Pa and a uniform frequency response ranging from 1 to 25 MHz. Its high sensitivity (1.6 μ V ∕ Pa) and compact size were achieved by capitalizing on the large electromechanical coupling coefficient of PVDF-TrFE and minimizing parasitic capacitance in a two-stage amplifier structure. The detection sensitivity of the newly designed sensor outperformed commercially available hydrophones with an equivalent sensing element area by a factor of 9. The sensor has been successfully integrated into a light scanning optoacoustic microscopy (OAM) system with a limited working space. Submicrometer resolution images were subsequently attained from living mice without employing signal averaging. The miniature sensor design can readily be integrated into various OAM systems and further facilitate multimodal imaging system implementations.","PeriodicalId":223078,"journal":{"name":"Advanced Photonics Nexus","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128750136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengfu Cheng, Xuyu Zhang, T. Zhong, Huanhao Li, Haoran Li, Lei Gong, Honglin Liu, Puxiang Lai
{"title":"Nonconvex optimization for optimum retrieval of the transmission matrix of a multimode fiber","authors":"Shengfu Cheng, Xuyu Zhang, T. Zhong, Huanhao Li, Haoran Li, Lei Gong, Honglin Liu, Puxiang Lai","doi":"10.1117/1.APN.2.6.066005","DOIUrl":"https://doi.org/10.1117/1.APN.2.6.066005","url":null,"abstract":"Abstract. Transmission matrix (TM) allows light control through complex media, such as multimode fibers (MMFs), gaining great attention in areas, such as biophotonics, over the past decade. Efforts have been taken to retrieve a complex-valued TM directly from intensity measurements with several representative phase-retrieval algorithms, which still see limitations of slow or suboptimum recovery, especially under noisy environments. Here, we propose a modified nonconvex optimization approach. Through numerical evaluations, it shows that the optimum focusing efficiency is approached with less running time or sampling ratio. The comparative tests under different signal-to-noise levels further indicate its improved robustness. Experimentally, the superior focusing performance of our algorithm is collectively validated by single- and multispot focusing; especially with a sampling ratio of 8, it achieves a 93.6% efficiency of the gold-standard holography method. Based on the recovered TM, image transmission through an MMF is realized with high fidelity. Due to parallel operation and GPU acceleration, our nonconvex approach retrieves a 8685 × 1024 TM (sampling ratio is 8) with 42.3 s on average on a regular computer. The proposed method provides optimum efficiency and fast execution for TM retrieval that avoids the need for an external reference beam, which will facilitate applications of deep-tissue optical imaging, manipulation, and treatment.","PeriodicalId":223078,"journal":{"name":"Advanced Photonics Nexus","volume":"42 1","pages":"066005 - 066005"},"PeriodicalIF":0.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139352055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Operation of multiphonon-assisted laser in the nanosecond time scales","authors":"Huichen Si, Fei Liang, Dazhi Lu, Haohai Yu, Huaijin Zhang, Yicheng Wu","doi":"10.1117/1.apn.2.5.056004","DOIUrl":"https://doi.org/10.1117/1.apn.2.5.056004","url":null,"abstract":". Electron – phonon coupling can tailor electronic transition processes and result in direct lasing far beyond the fluorescence spectrum. The applicable time scales of these kinds of multiphonon-assisted lasers determine their scientific boundaries and further developments, since the response speed of lattice vibrations is much slower than that of electrons. At present, the temporal dynamic behavior of multiphonon-assisted lasers has not yet been explored. Herein, we investigate the Q-switched laser performance of ytterbium-doped YCa 4 O ð BO 3 Þ 3 (Yb:YCOB) crystal with phonon-assisted emission in nanosecond scales. Using different Q-switchers, the three-phonon-assisted lasers around 1130 nm were realized, and a stable Q-switching was realized in the time domain from submicroseconds to tens of nanoseconds. To the best of our knowledge, this is the longest laser wavelength in all pulse Yb lasers. The minimum pulse width and maximum pulse energy are 29 ns and 204 μ J, respectively. These results identify that the electron – phonon coupling is a fast physical process, at least much faster than the present nanosecond pulse width, which supports the operation of multiphonon-assisted lasers in the nanosecond range. In addition, we also provide a simple setup to create pulse lasers at those wavelengths with weak spontaneous emission.","PeriodicalId":223078,"journal":{"name":"Advanced Photonics Nexus","volume":"84 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122650618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinge Yang, Seongwook Choi, Jiwoong Kim, Byullee Park, Chulhong Kim
{"title":"Recent advances in deep-learning-enhanced photoacoustic imaging","authors":"Jinge Yang, Seongwook Choi, Jiwoong Kim, Byullee Park, Chulhong Kim","doi":"10.1117/1.apn.2.5.054001","DOIUrl":"https://doi.org/10.1117/1.apn.2.5.054001","url":null,"abstract":". Photoacoustic imaging (PAI), recognized as a promising biomedical imaging modality for preclinical and clinical studies, uniquely combines the advantages of optical and ultrasound imaging. Despite PAI ’ s great potential to provide valuable biological information, its wide application has been hindered by technical limitations, such as hardware restrictions or lack of the biometric information required for image reconstruction. We first analyze the limitations of PAI and categorize them by seven key challenges: limited detection, low-dosage light delivery, inaccurate quantification, limited numerical reconstruction, tissue heterogeneity, imperfect image segmentation/classification, and others. Then, because deep learning (DL) has increasingly demonstrated its ability to overcome the physical limitations of imaging modalities, we review DL studies from the past five years that address each of the seven challenges in PAI. Finally, we discuss the promise of future research directions in DL-enhanced PAI.","PeriodicalId":223078,"journal":{"name":"Advanced Photonics Nexus","volume":"144 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116434681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wayesh Qarony, A. Mayet, Ekaterina Ponizovskaya Devine, S. Ghandiparsi, Cesar Bartolo-Perez, Ahasan Ahamed, Amita Rawat, H. Mamtaz, Toshishige Yamada, Shih-Yuan Wang, M. Islam
{"title":"Achieving higher photoabsorption than group III-V semiconductors in ultrafast thin silicon photodetectors with integrated photon-trapping surface structures","authors":"Wayesh Qarony, A. Mayet, Ekaterina Ponizovskaya Devine, S. Ghandiparsi, Cesar Bartolo-Perez, Ahasan Ahamed, Amita Rawat, H. Mamtaz, Toshishige Yamada, Shih-Yuan Wang, M. Islam","doi":"10.1117/1.apn.2.5.056001","DOIUrl":"https://doi.org/10.1117/1.apn.2.5.056001","url":null,"abstract":",","PeriodicalId":223078,"journal":{"name":"Advanced Photonics Nexus","volume":"319 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125776786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Achromatic on-chip focusing of graphene plasmons for spatial inversions of broadband digital optical signals","authors":"Zhiyong Wu, Zheng Xu","doi":"10.1117/1.apn.2.5.056003","DOIUrl":"https://doi.org/10.1117/1.apn.2.5.056003","url":null,"abstract":". On-chip focusing of plasmons in graded-index lenses is important for imaging, lithography, signal processing, and optical interconnects at the deep subwavelength nanoscale. However, owing to the inherent strong wavelength dispersion of plasmonic materials, the on-chip focusing of plasmons suffers from severe chromatic aberrations. With the well-established planar dielectric grating, a graded-index waveguide array lens (GIWAL) is proposed to support the excitation and propagation of acoustic graphene plasmon polaritons (AGPPs) and to achieve the achromatic on-chip focusing of the AGPPs with a focus as small as about 2% of the operating wavelength in the frequency band from 10 to 20 THz, benefiting from the wavelength-independent index profile of the GIWAL. An analytical theory is provided to understand the on-chip focusing of the AGPPs and other beam evolution behaviors, such as self-focusing, self-collimation, and pendulum effects of Gaussian beams as well as spatial inversions of digital optical signals. Furthermore, the possibility of the GIWAL to invert spatially broadband digital optical signals is demonstrated, indicating the potential value of the GIWAL in broadband digital communication and signal processing.","PeriodicalId":223078,"journal":{"name":"Advanced Photonics Nexus","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115001204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ximin Tian, Yafeng Huang, Junwei Xu, Tao Jiang, Pei Ding, Yaning Xu, Shenglan Zhang, Zhiyuan Li
{"title":"Differentiated design strategies toward broadband achromatic and polarization-insensitive metalenses","authors":"Ximin Tian, Yafeng Huang, Junwei Xu, Tao Jiang, Pei Ding, Yaning Xu, Shenglan Zhang, Zhiyuan Li","doi":"10.1117/1.apn.2.5.056002","DOIUrl":"https://doi.org/10.1117/1.apn.2.5.056002","url":null,"abstract":". Metasurfaces have emerged as a flexible platform for shaping the electromagnetic field via the tailoring phase, amplitude, and polarization at will. However, the chromatic aberration inherited from building blocks ’ diffractive nature plagues them when used in many practical applications. Current solutions for eliminating chromatic aberration usually rely on searching through many meta-atoms to seek designs that satisfy both phase and phase dispersion preconditions, inevitably leading to intensive design efforts. Moreover, most schemes are commonly valid for incidence with a specific spin state. Here, inspired by the Rayleigh criterion for spot resolution, we present a design principle for broadband achromatic and polarization-insensitive metalenses using two sets of anisotropic nanofins based on phase change material Ge 2 Sb 2 Se 4 Te 1 . By limiting the rotation angles of all nanofins to either 0 deg or 90 deg, the metalens with a suitable numerical aperture constructed by this fashion allows for achromatic and polarization-insensitive performance across the wavelength range of 4 – 5 μ m, while maintaining high focusing efficiency and diffraction-limited performance. We also demonstrate the versatility of our approach by successfully implementing the generation of broadband achromatic and polarization-insensitive focusing optical vortex. This work represents a major advance in achromatic metalenses and may find more applications in compact and chip-scale devices.","PeriodicalId":223078,"journal":{"name":"Advanced Photonics Nexus","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130357472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review on near-field detection technology in the biomedical field","authors":"Xitian Hu, Li Zhou, Xu Wu, Yan Peng","doi":"10.1117/1.APN.2.4.044002","DOIUrl":"https://doi.org/10.1117/1.APN.2.4.044002","url":null,"abstract":"Abstract. We review the recent biomedical detection developments of scanning near-field optical microscopy (SNOM), focusing on scattering-type SNOM, atomic force microscope-based infrared spectroscopy, peak force infrared microscopy, and photo-induced force microscopy, which have the advantages of label-free, noninvasive, and specific spectral recognition. Considering the high water content of biological samples and the strong absorption of water by infrared waves, we divide the relevant research on these techniques into two categories: one based on a nonliquid environment and the other based on a liquid environment. In the nonliquid environment, the chemical composition and structural information of biomedical samples can be obtained with nanometer resolution. In the liquid environment, these techniques can be used to monitor the dynamic chemical reaction process and track the process of chemical composition and structural change of single molecules, which is conducive to exploring the development mechanism of physiological processes. We elaborate their experimental challenges, technical means, and actual cases for three microbiomedical samples (including biomacromolecules, cells, and tissues). We also discuss the prospects and challenges for their development. Our work lays a foundation for the rational design and efficient use of near-field optical microscopy to explore the characteristics of microscopic biology.","PeriodicalId":223078,"journal":{"name":"Advanced Photonics Nexus","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123207522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compact microring resonator based on ultralow-loss multimode silicon nitride waveguide","authors":"Shuai Cui, Kaixiang Cao, Zhao Pan, Xiaoyan Gao, Yu Yu, Xinliang Zhang","doi":"10.1117/1.APN.2.4.046007","DOIUrl":"https://doi.org/10.1117/1.APN.2.4.046007","url":null,"abstract":"Abstract. Silicon nitride (Si3N4) waveguides with high confinement and low loss have been widely used in integrated nonlinear photonics. Indeed, state-of-the-art ultralow-loss Si3N4 waveguides are all fabricated using complex fabrication processes, and all of those reported that high Q microring resonators (MRRs) are fabricated in laboratories. We propose and demonstrate an ultralow-loss Si3N4 racetrack MRR by shaping the mode using a uniform multimode structure to reduce its overlap with the waveguide. The MRR is fabricated by the standard multi project wafer (MPW) foundry process. It consists of two multimode straight waveguides (MSWs) connected by two multimode waveguide bends (MWBs). In particular, the MWBs are based on modified Euler bends, and an MSW directional coupler is used to avoid higher-order mode excitation. In this way, although a multimode waveguide is used in the MRR, only the fundamental mode is excited and transmitted with ultralow loss. Meanwhile, thanks to the 180 deg Euler bend, a compact chip footprint of 2.226 mm perimeter with an effective radius as small as 195 μm and a waveguide width of 3 μm is achieved. Results show that based on the widely used MPW process, a propagation loss of only 3.3 dB / m and a mean intrinsic Q of around 10.8 million are achieved for the first time.","PeriodicalId":223078,"journal":{"name":"Advanced Photonics Nexus","volume":"124 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116548530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}