Yanqi Liu, Keyang Liu, Zhaoyang Li, Y. Leng, Ruxin Li
{"title":"Coherently tiled Ti:sapphire laser amplification: a way to break the 10 petawatt limit on current ultraintense lasers","authors":"Yanqi Liu, Keyang Liu, Zhaoyang Li, Y. Leng, Ruxin Li","doi":"10.1117/1.APN.2.6.066009","DOIUrl":null,"url":null,"abstract":"Abstract. After reaching a world record of 10 PW, the peak power development of the titanium-sapphire (Ti:sapphire) PW ultraintense lasers has hit a bottleneck, and it seems to be difficult to continue increasing due to the difficulty of manufacturing larger Ti:sapphire crystals and the limitation of parasitic lasing that can consume stored pump energy. Unlike coherent beam combining, coherent Ti:sapphire tiling is a viable solution for expanding Ti:sapphire crystal sizes, truncating transverse amplified spontaneous emission, suppressing parasitic lasing, and, importantly, not requiring complex space-time tiling control. A theoretical analysis of the above features and an experimental demonstration of high-quality laser amplification are reported. The results show that the addition of a 2×2 tiled Ti:sapphire amplifier to today’s 10 PW ultraintense laser is a viable technique to break the 10 PW limit and directly increase the highest peak power recorded by a factor of 4, further approaching the exawatt class.","PeriodicalId":223078,"journal":{"name":"Advanced Photonics Nexus","volume":"69 1","pages":"066009 - 066009"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.APN.2.6.066009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. After reaching a world record of 10 PW, the peak power development of the titanium-sapphire (Ti:sapphire) PW ultraintense lasers has hit a bottleneck, and it seems to be difficult to continue increasing due to the difficulty of manufacturing larger Ti:sapphire crystals and the limitation of parasitic lasing that can consume stored pump energy. Unlike coherent beam combining, coherent Ti:sapphire tiling is a viable solution for expanding Ti:sapphire crystal sizes, truncating transverse amplified spontaneous emission, suppressing parasitic lasing, and, importantly, not requiring complex space-time tiling control. A theoretical analysis of the above features and an experimental demonstration of high-quality laser amplification are reported. The results show that the addition of a 2×2 tiled Ti:sapphire amplifier to today’s 10 PW ultraintense laser is a viable technique to break the 10 PW limit and directly increase the highest peak power recorded by a factor of 4, further approaching the exawatt class.