M. Pralle, C. Vineis, C. Palsule, J. Jiang, J. Carey
{"title":"Extending black silicon imaging to backside illumination","authors":"M. Pralle, C. Vineis, C. Palsule, J. Jiang, J. Carey","doi":"10.1117/12.2223063","DOIUrl":"https://doi.org/10.1117/12.2223063","url":null,"abstract":"SiOnyx has extended the spectral sensitivity of a high performance low cost CMOS image sensor to cover the spectral band from 400nm to 1200nm. The enhanced quantum efficiency is combined with a CMOS sensor design that demonstrates state of the art read noise characteristics and low fixed pattern noise. The resultant sensor exhibits high signal to noise ratio throughout all lighting conditions from noon day sun to moonless clear starlight. In outdoor nighttime conditions, the extended quantum efficiency at wavelengths beyond 1000nm enables the silicon sensor to image “nightglow” illumination. This spectral range has historically only been accessible using non-silicon based SWIR sensors. This enables a true digital nightvision sensor with demonstrated imaging performance at 60 FPS at light levels below 1 mLux. The quantum efficiency enhancement is achieved by utilizing SiOnyx’s proprietary ultrafast laser semiconductor processing technology that enhances the absorption of light within a thin pixel layer. Recent progress in device architecture has enabled a further step change in near infrared quantum efficiency performance leading to improved nightglow imaging. SiOnyx has integrated this sensor into various camera systems for surveillance, nightvision and 1064nm laser see-spot.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131859130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Islam, J. Y. Feng, A. Berkovich, P. Abshire, G. Barrows, F. Choa
{"title":"InGaAs/InP PIN photodetector arrays made by MOCVD based zinc diffusion processes","authors":"Mohammad Islam, J. Y. Feng, A. Berkovich, P. Abshire, G. Barrows, F. Choa","doi":"10.1117/12.2224297","DOIUrl":"https://doi.org/10.1117/12.2224297","url":null,"abstract":"InGaAs based long-wavelength near infrared detector arrays are very important for high dynamic range imaging operations seamlessly from daylight environments to dark environments. These detector devices are usually made by open-hole diffusion technique which has the advantage of lower leakage current and higher reliability. The diffusion process is usually done in a sealed quartz ampoule with dopant compounds like ZnP2, ZnAs3, CdP2 etc. side by side with semiconductor samples. The ampoule needs to be prepared and sealing process needs to be done in very clean environment and each time can have variations. In this work we demonstrated using MOCVD growth chamber to perform the diffusion process. The advantages of such a process are that the tool is constantly kept in ultra clean environment and can reproducibly provide clean processes without introducing unexpected defects. We can independently control the temperature and flow rate of the dopant - they are not linked as in the ampoule diffusion case. The process can be done on full wafers with good uniformity through substrate rotation, which is good for large detector array fabrications. We have fabricated different types of InGaAs/InP detector arrays using dimethyl zinc as the dopant source and PH3 or AsH3 for surface protection. Pre-studies of Zn-diffusion profiles in InGaAs and InP at different temperatures, flow rates, diffusion times and followed annealing times were conducted to obtain good control of the process. Grown samples were measured by C-V profilometer to evaluate the diffusion depth and doping concentration. The dependence of the diffusion profile with temperature, dopant partial pressures, and annealing temperature and time and some of the fabricated device characteristics are reported.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"9819 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130374488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High spectral resolution airborne short wave infrared hyperspectral imager","authors":"Liqing Wei, Liyin Yuan, Yue-ming Wang, Xiaoqiong Zhuang","doi":"10.1117/12.2223652","DOIUrl":"https://doi.org/10.1117/12.2223652","url":null,"abstract":"Short Wave InfraRed(SWIR) spectral imager is good at detecting difference between materials and penetrating fog and mist. High spectral resolution SWIR hyperspectral imager plays a key role in developing earth observing technology. Hyperspectral data cube can help band selections that is very important for multispectral imager design. Up to now, the spectral resolution of many SWIR hyperspectral imagers is about 10nm. A high sensitivity airborne SWIR hyperspectral imager with narrower spectral band will be presented. The system consists of TMA telescope, slit, spectrometer with planar blazed grating and high sensitivity MCT FPA. The spectral sampling interval is about 3nm. The IFOV is 0.5mrad. To eliminate the influence of the thermal background, a cold shield is designed in the dewar. The pixel number of spatial dimension is 640. Performance measurement in laboratory and image analysis for flight test will also be presented.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122252273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and analysis of frequency-selective surface enabled microbolometers","authors":"Tao Liu, C. Qu, M. Almasri, E. Kinzel","doi":"10.1117/12.2224271","DOIUrl":"https://doi.org/10.1117/12.2224271","url":null,"abstract":"Frequency Selective Surfaces (FSS) are periodic array of sub-wavelength antenna elements. They allow the absorptance and reflectance of a surface to be engineered with respect to wavelength, polarization and angle-of-incidence. This paper applies this technique to microbolometers for uncooled infrared sensing applications. Both narrowband and broadband near perfect absorbing surfaces are synthesized and applied engineer the response of microbolometers. The paper focuses on simple FSS geometries (hexagonal close packed disk arrays) that can be fabricated using conventional lithographic tools for use at thermal infrared wavelengths (feature sizes > 1 μm). The affects of geometry and material selection for this geometry is described in detail. In the microbolometer application, the FSS controls the absorption rather than a conventional Fabry-Perot cavity and this permits an improved thermal design. A coupled full wave electromagnetic/transient thermal model of the entire microbolometer is presented and analyzed using the finite element method. The absence of the cavity also permits more flexibility in the design of the support arms/contacts. This combined modeling permits prediction of the overall device sensitivity, time-constant and the specific detectivity.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116514160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hossein Lotfi, Lu Li, L. Lei, H. Ye, S. Rassel, Yu-chao Jiang, Rui Q. Yang, J. Klem, T. Mishima, Michael B. Santos, Matthew B. Johnson, J. Gupta
{"title":"Recent developments in interband cascade infrared photodetectors","authors":"Hossein Lotfi, Lu Li, L. Lei, H. Ye, S. Rassel, Yu-chao Jiang, Rui Q. Yang, J. Klem, T. Mishima, Michael B. Santos, Matthew B. Johnson, J. Gupta","doi":"10.1117/12.2235086","DOIUrl":"https://doi.org/10.1117/12.2235086","url":null,"abstract":"We investigate high-temperature and high-frequency operation of interband cascade infrared photodetectors (ICIPs)-two critical properties. Short-wavelength ICIPs with a cutoff wavelength of 2.9 μm had Johnson-noise limited detectivity of 5.8×109 cmHz1/2/W at 300 K, comparable to the commercial Hg1-xCdxTe photodetectors of similar wavelengths. A simple but effective method to estimate the minority carrier diffusion length in short-wavelength ICIPs is introduced. Using this approach, the diffusion length was estimated to be significantly shorter than 1 μm at high temperatures, indicating the importance of a multiple-stage photodetector (e.g., ICIPs) at high temperatures. Recent investigations on the high-frequency operation of mid-wavelength ICIPs (λc=4.3 μm) are discussed. These photodetectors had 3-dB bandwidths up to 1.3 GHz with detectivities exceeding 1x109 cmHz1/2/W at room temperature. These results validate the ability of ICIPs to achieve high bandwidths with large sensitivity and demonstrate the great potential for applications such as: heterodyne detection, and free-space optical communication.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129705068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Hübner, B. Achtner, M. Kraus, C. Siemens, M. Münzberg
{"title":"Verification of sensitivity enhancement of SWIR imager technology in advanced multispectral SWIR/VIS zoom cameras with constant and variable F-number","authors":"M. Hübner, B. Achtner, M. Kraus, C. Siemens, M. Münzberg","doi":"10.1117/12.2223440","DOIUrl":"https://doi.org/10.1117/12.2223440","url":null,"abstract":"Current designs of combined VIS-color/SWIR camera optics use constant F-number over the full field of view (FOV) range. Especially in the SWIR, limited space for the camera integration in existing system volumes and relatively high pitch dimensions of 15μm or even 20μm force the use of relatively high F- numbers to accomplish narrow fields of view less than 2.0° with reasonable resolution for long range observation and targeting applications. Constant F-number designs are already reported and considered [1] for submarine applications. The comparison of electro-optical performance was based on the given detector noise performance and sensitivity data by the detector manufacturer [1] and further modelling of the imaging chain within linear MTF system theory. The visible channel provides limited twilight capability at F/2.6 but in the SWIR the twilight capability is degraded due to the relatively high F-number of F/7 or F/5.25 for 20 μm and 15 μm pitch, respectively. Differences between prediction and experimental verification of sensitivity in terms of noise equivalent irradiance (NEI) and scenery based limiting illumination levels are shown for the visible and the SWIR spectral range. Within this context, currently developed improvements using optical zoom designs for the multispectral SWIR/VIS camera optics with continuously variable Fnumber are discussed, offering increased low light level capabilities at wide and medium fields of view while still enabling a NFOV < 2° with superior long range targeting capabilities under limited atmospherical sight conditions at daytime.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"136 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116716348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dual-band uncooled infrared sensors employing Fano resonance in plasmonic absorbers","authors":"S. Ogawa, Yousuke Takagawa, M. Kimata","doi":"10.1117/12.2222728","DOIUrl":"https://doi.org/10.1117/12.2222728","url":null,"abstract":"Wavelength-selective uncooled infrared (IR) sensors have significant advantages with regard to applications such as fire detection, gas analysis, hazardous materials recognition, and biological analysis. We have previously demonstrated an uncooled IR sensor based on a two-dimensional plasmonic absorber (2D PLA) that exhibited wavelength-selective absorption over a wide range spanning the middle and long-wavelength IR regions. This device had a Au-based 2D periodic dimple-array structure, in which surface plasmon modes were induced, leading to wavelength-selective absorption, such that the absorption wavelength was determined by the period of the surface dimples. However, dual-band operation based on this concept has not yet been investigated, even though the ability to absorb in two different wavelength bands is extremely important for object recognition. In the present study, a dual-band uncooled IR sensor was developed using a 2D PLA with asymmetric dimple periods (2-D PLA-AP). To achieve multiband absorption, the Au-based dimples in this device were fabricated so as to have different periods in the orthogonal x and y directions. Theoretical calculations predicted asymmetric absorption spectra, attributed to Fano resonance in the 2-D PLA-AP. A sensor was subsequently fabricated using complementary metal oxide semiconductor and micromachining techniques. Measurement of the spectral responsivity demonstrated that selective absorption occurred in two different wavelength bands, determined by the dimple periods in the x and y directions. The results obtained in this study will be applicable to the development of advanced sensors capable of multiband detection in the IR region.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128664139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Kim, Z. Ku, A. Urbas, Sang-Woo Kang, Sang Jun Lee
{"title":"Long wavelength infrared photodetector using submonolayer quantum dots","authors":"J. Kim, Z. Ku, A. Urbas, Sang-Woo Kang, Sang Jun Lee","doi":"10.1117/12.2223569","DOIUrl":"https://doi.org/10.1117/12.2223569","url":null,"abstract":"We report on InAs SML QD infrared photodetector performance for long wavelength infrared detection. The device structure consists of InAs SML QDs embedded in InxGa1-xAs quantum well (QW) surrounded by GaAs and AlxGa1- xAs barrier. In order to investigate the structural properties of SML QDs, we took cross-sectional STEM images. We have measured the polarization dependent spectral response of SML-QD based photodetector using various angular inplane and out-plane polarizations. We also report a systematic approach for controlling the intersubband transition energy level in SML QD infrared photodetectors, in order to control the peak wavelength of the device.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129570942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Breiter, M. Benecke, D. Eich, H. Figgemeier, A. Weber, J. Wendler, A. Sieck
{"title":"MCT SWIR modules for passive and active imaging applications","authors":"R. Breiter, M. Benecke, D. Eich, H. Figgemeier, A. Weber, J. Wendler, A. Sieck","doi":"10.1117/12.2223707","DOIUrl":"https://doi.org/10.1117/12.2223707","url":null,"abstract":"Based on AIM’s state-of-the-art MCT IR technology, detector modules for the SWIR spectral range have been developed, fabricated and characterized. While LPE grown MCT FPAs with extended 2.5μm cut-off have been fabricated and integrated also MBE grown MCT on GaAs is considered for future production. Two imaging applications have been in focus operating either in passive mode by making use of e.g. the night glow, or in active mode by laser illumination for gated viewing. Dedicated readout integrated circuits (ROIC), realized in 0.18μm Si-CMOS technology providing the required functionality for passive imaging and gated imaging, have been designed and implemented. For both designs a 640x512 15μm pitch format was chosen. The FPAs are integrated in compact dewar cooler configurations using AIM’s split linear coolers. A command and control electronics (CCE) provides supply voltages, biasing, clocks, control and video digitization for easy system interfacing. For imaging under low-light conditions a low-noise 640x512 15μm pitch ROIC with CTIA input stages and correlated double sampling was designed. The ROIC provides rolling shutter and snapshot integration. To reduce size, weight, power and cost (SWaP-C) a 640x512 format detector in a 10μm pitch is under development. The module makes use of the extended SWIR spectral cut-off up to 2.5μm. To be used for active gated-viewing operation SWIR MCT avalanche photodiodes have been implemented and characterized on FPA level in a 640x512 15μm pitch format. The specific ROIC provides also the necessary functions for range gate control and triggering by the laser illumination. First lab and field tests of a gated viewing demonstrator have been carried out. The paper will present the development status and performance results of AIM’s MCT based SWIR Modules for imaging applications.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"90 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129301910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Généreux, B. Tremblay, M. Girard, J. Paultre, F. Provençal, Y. Desroches, H. Oulachgar, S. Ilias, C. Alain
{"title":"On the figure of merit of uncooled bolometers fabricated at INO","authors":"F. Généreux, B. Tremblay, M. Girard, J. Paultre, F. Provençal, Y. Desroches, H. Oulachgar, S. Ilias, C. Alain","doi":"10.1117/12.2228863","DOIUrl":"https://doi.org/10.1117/12.2228863","url":null,"abstract":"This paper reports the NETD values of various uncooled bolometers fabricated at INO. They are measured using an external readout circuit that emulates the readout scheme of a commercial ROIC. The measured NETD values range between 6 and 75 mK, depending on the pixel pitch and response time. Pixel pitches of 12, 17 and 35 μm are considered. The figure of merit of the characterized detectors is below 350 mK*ms.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"46 5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114272180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}