Synthetic Metals最新文献

筛选
英文 中文
Engineering CoMn2O₄ nanofibers: Enhancing one-dimensional electrode materials for high-performance supercapacitors
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2025-01-21 DOI: 10.1016/j.synthmet.2025.117836
Sidraya N. Jirankalagi , Avinash C. Molane , Sarjerao M. Sutar , Ramesh N. Mulik , Manickam Selvaraj , Kalathiparambil Rajendra Pai Sunajadevi , Vikas B. Patil
{"title":"Engineering CoMn2O₄ nanofibers: Enhancing one-dimensional electrode materials for high-performance supercapacitors","authors":"Sidraya N. Jirankalagi ,&nbsp;Avinash C. Molane ,&nbsp;Sarjerao M. Sutar ,&nbsp;Ramesh N. Mulik ,&nbsp;Manickam Selvaraj ,&nbsp;Kalathiparambil Rajendra Pai Sunajadevi ,&nbsp;Vikas B. Patil","doi":"10.1016/j.synthmet.2025.117836","DOIUrl":"10.1016/j.synthmet.2025.117836","url":null,"abstract":"<div><div>One-dimensional CoMn<sub>2</sub>O<sub>4</sub> nanofibers were developed via the electrospinning method, offers a novel approach for designing electrode materials for energy storage device -supercapacitors. Field emission scanning electron microscopy (FESEM) with EDX confirmed the highly porous CoMn<sub>2</sub>O<sub>4</sub> phase with desired composition. Elemental mapping studies confirmed uniform distribution of Co, Mn, and O elements throughout the nanofibers.Electrochemical studies underscored the crucial role of structural voids and spacing in enhancing energy storage capacity, establishing CoMn<sub>2</sub>O<sub>4</sub> as a promising electrode material. Specific energy and power studies yielded remarkable results of 93.84 Whr/kg and 55.20 kW/kg, respectively. Additionally, specific capacitance determination returned 937.42 F/g, indicating exceptional charging and discharging performance over 1000 cycles with 93.3 % capacitance retention. Moreover, the flexible symmetric supercapacitor is expected to demonstrate exceptional flexibility and electrochemical stability, achieving a specific energy of 232 Wh/kg and a specific power of 84 kW/kg at a current density of 1 mA/cm². These findings advance our understanding of CoMn<sub>2</sub>O<sub>4</sub> nanofibers and offer insights into developing efficient and stable energy storage systems for diverse applications.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117836"},"PeriodicalIF":4.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A highly stretchable, stable and sensitive PEDOT:PSS-P(HEMA-co-AA) hydrogel for strain sensors
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2025-01-20 DOI: 10.1016/j.synthmet.2025.117835
Yu Lin , Gen Li , Juan Teng , Haibo Wang , Ximei Liu
{"title":"A highly stretchable, stable and sensitive PEDOT:PSS-P(HEMA-co-AA) hydrogel for strain sensors","authors":"Yu Lin ,&nbsp;Gen Li ,&nbsp;Juan Teng ,&nbsp;Haibo Wang ,&nbsp;Ximei Liu","doi":"10.1016/j.synthmet.2025.117835","DOIUrl":"10.1016/j.synthmet.2025.117835","url":null,"abstract":"<div><div>As a crucial component of flexible electronic devices, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based hydrogels for strain sensors have garnered extensive attention for their potential in the field of wearable sensors due to their inherent conductivity and flexibility. However, challenges such as poor mechanical strength, limited sensitivity, and poor durability have hindered the widespread application of PEDOT:PSS hydrogels in high-performance strain sensors. In this study, we develop a novel PEDOT:PSS-P(HEMA-co-AA) hydrogel that addresses common limitations in hydrogel applications, demonstrating remarkable stretchability, low hysteresis, and reliable conductivity. The hydrogel is synthesized using a semi-interpenetrating polymer network (SIPN) strategy, combining the linear conducting polymer PEDOT:PSS with a chemically cross-linked network based on 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AA). This hybrid structure notably contributes to the hydrogel's mechanical properties, achieving a stretchability of 195 %, while maintaining a rapid response time of 0.20 seconds and exceptional cyclic stability over 1000 cycles under 100 % strain. Moreover, the hydrogel demonstrates promising strain-sensing capabilities, positioning it as a strong candidate for future applications in wearable electronics and flexible sensors. The adoption of the SIPN strategy, along with the synergistic combination of PEDOT:PSS and P(HEMA-co-AA), paves a new pathway for enhancing the mechanical performance and sensing properties of hydrogels in strain-sensing technologies.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117835"},"PeriodicalIF":4.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating theory and practice in the design of new trisazotriaryl compounds
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2025-01-20 DOI: 10.1016/j.synthmet.2025.117839
Rafael Guiotti de Pádua , João Paulo Almirão de Jesus , Ana Clara dos Santos Camargo , Sidney Alves Lourenço , Felipe de Almeida La Porta , Renato Márcio Ribeiro-Viana , Marco Aurélio Toledo da Silva
{"title":"Integrating theory and practice in the design of new trisazotriaryl compounds","authors":"Rafael Guiotti de Pádua ,&nbsp;João Paulo Almirão de Jesus ,&nbsp;Ana Clara dos Santos Camargo ,&nbsp;Sidney Alves Lourenço ,&nbsp;Felipe de Almeida La Porta ,&nbsp;Renato Márcio Ribeiro-Viana ,&nbsp;Marco Aurélio Toledo da Silva","doi":"10.1016/j.synthmet.2025.117839","DOIUrl":"10.1016/j.synthmet.2025.117839","url":null,"abstract":"<div><div>Herein, we report an experimental and theoretical investigation of the physicochemical properties of trisazotriaryl molecules. This work is heavily focused on the influence of the tautomerism effect and the structural modifications on the β-D-glucosyl Yariv molecule. The modifications were designed to make trisazotriaryl soluble in nonpolar solvents and improve electron donor ability. From an experimental standpoint, the modified molecules were characterized using spectroscopy techniques, such as infrared and ultraviolet-visible absorbance, photoluminescence, and nuclear magnetic resonance. From a theoretical perspective, density functional theory calculations provided more profound insight into the structural, spectroscopic, and electronic properties. Therefore, through a combined experimental and theoretical methodology, we elucidated some critical aspects of both the β-D-glucosyl Yariv and its modified counterparts, such as the tautomer-leaning preference on solvent media and higher stabilities on tautomeric forms, band gaps of indirect nature, and the nature of the excitonic transitions.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117839"},"PeriodicalIF":4.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simple ball-milling enables embedding of SnO2 nanoparticles into micron carbon for stable lithium storage
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2025-01-20 DOI: 10.1016/j.synthmet.2025.117837
Pengkai Sun , Zhengyan Jiang , Chao Li , Yuping Wang , Qinghua Tian , Wei Zhang
{"title":"Simple ball-milling enables embedding of SnO2 nanoparticles into micron carbon for stable lithium storage","authors":"Pengkai Sun ,&nbsp;Zhengyan Jiang ,&nbsp;Chao Li ,&nbsp;Yuping Wang ,&nbsp;Qinghua Tian ,&nbsp;Wei Zhang","doi":"10.1016/j.synthmet.2025.117837","DOIUrl":"10.1016/j.synthmet.2025.117837","url":null,"abstract":"<div><div>Despite the improved performance of SnO<sub>2</sub>/C composites, these composites usually involve complex preparation processes that are not conducive to the development of SnO<sub>2</sub> anode. Herein, a simple ball-milling and followed by carbonization approach was demonstrated to synthesize SnO<sub>2</sub> NPs@C composite composed of SnO<sub>2</sub> nanoparticles (NPs) embedded within micron carbon. The findings confirmed that the combination of introduction of carbon and modulation of SnO<sub>2</sub> NPs content offered SnO<sub>2</sub> NPs@C superior structural stability and good kinetics including high Li<sup>+</sup> diffusion coefficient and low activation energy for charge transfer, and hence it shown stable lithium storage performance with 1000 cycles of lifespan.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117837"},"PeriodicalIF":4.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexo-electrochemical Hg(II) sensor based on Ag/Nd-TMA MOF modified carbon cloth electrode: Surface adsorptive reaction mechanism utilizing X-ray photoelectron spectroscopy
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2025-01-17 DOI: 10.1016/j.synthmet.2025.117833
Shubham S. Patil , Farhat U. Shaikh , Vijaykiran N. Narwade , Priyanka C. Zine , Pragati R. Kagne , Rajendra S. Sonkawade , Meng-Lin Tsai , Tibor Hianik , Mahendra D. Shirsat
{"title":"Flexo-electrochemical Hg(II) sensor based on Ag/Nd-TMA MOF modified carbon cloth electrode: Surface adsorptive reaction mechanism utilizing X-ray photoelectron spectroscopy","authors":"Shubham S. Patil ,&nbsp;Farhat U. Shaikh ,&nbsp;Vijaykiran N. Narwade ,&nbsp;Priyanka C. Zine ,&nbsp;Pragati R. Kagne ,&nbsp;Rajendra S. Sonkawade ,&nbsp;Meng-Lin Tsai ,&nbsp;Tibor Hianik ,&nbsp;Mahendra D. Shirsat","doi":"10.1016/j.synthmet.2025.117833","DOIUrl":"10.1016/j.synthmet.2025.117833","url":null,"abstract":"<div><div>This study addresses the electrochemical performance reliability of a silver-incorporated neodymium trimesic acid (Ag/Nd-TMA) metal-organic framework (MOF) immobilized on a flexible carbon cloth electrode (CC) and the reaction mechanism utilizing X-ray photoelectron spectroscopic (XPS) analysis. The incorporation of Ag/Nd-TMA onto the electrode surface was thoroughly characterized through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The electrode's remarkable flexibility was explored through both fold and no-fold experimental configurations, both of which demonstrated excellent differential pulse voltammetric (DPV) performance. The sensing platform exhibited a remarkable detection limit of 0.568 nM for Hg(II), underscoring its exceptional sensitivity (1.60 nM<sup>−1</sup>) and repeatability with 0.47 % RSD. Moreover, utilizing the XPS method, the reaction mechanism revealed the surface adsorptive behaviour of the Ag/Nd-TMA electrode before and after DPV responses. This flexible Ag/Nd-TMA electrode showcases a promising avenue for highly sensitive and adaptable electrochemical sensing applications, particularly in the realm of environmental monitoring and trace metal analysis.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117833"},"PeriodicalIF":4.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial – Advances in blue organic electroluminescence
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2025-01-15 DOI: 10.1016/j.synthmet.2025.117834
Youngmin You, Russell J. Holmes
{"title":"Editorial – Advances in blue organic electroluminescence","authors":"Youngmin You,&nbsp;Russell J. Holmes","doi":"10.1016/j.synthmet.2025.117834","DOIUrl":"10.1016/j.synthmet.2025.117834","url":null,"abstract":"","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117834"},"PeriodicalIF":4.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143471703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green TADF emitters based on adamantane-substituted acridine donor/diphenyl ketone acceptor in D-A and D-A-D systems
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2025-01-14 DOI: 10.1016/j.synthmet.2025.117831
Aziz Khan , Yu-Yang Ma , Sarvendra Kumar , Shijie Ge , Man-Keung Fung , Tim Leydecker , Zhiming Wang
{"title":"Green TADF emitters based on adamantane-substituted acridine donor/diphenyl ketone acceptor in D-A and D-A-D systems","authors":"Aziz Khan ,&nbsp;Yu-Yang Ma ,&nbsp;Sarvendra Kumar ,&nbsp;Shijie Ge ,&nbsp;Man-Keung Fung ,&nbsp;Tim Leydecker ,&nbsp;Zhiming Wang","doi":"10.1016/j.synthmet.2025.117831","DOIUrl":"10.1016/j.synthmet.2025.117831","url":null,"abstract":"<div><div>The strategic change in the basic skeleton from donor-acceptor (<strong>D-A</strong>) to donor-acceptor-donor (<strong>D-A-D</strong>) to achieve an efficient external quantum efficiency (EQE) as well as high thermal stability is an invitation to develop new materials for organic light emitting diodes (OLED). In this way, adamantane-substituted acridine donor-based emitters, <strong>AA-DPK</strong> and <strong>AA-DPK-AA</strong> were developed for green thermally activated delayed fluorescence (TADF) emission. Moreover, the diphenylketone unit was used as an acceptor. The photophysical properties were explored and exhibited the dual emission characters, involving one emission from local or weak and other from strong intramolecular charge transfer (ICT) mechanism. Besides, the PL results exhibited the exact emission peaks not only in solution but also in OLED devices for <strong>AA-DPK</strong> and <strong>AA-DPK-AA</strong> molecules with dual fluorescence emission (DFE) nature in solution, which could be ascribed to quasi axial conformation (QAC) and quasi equatorial conformation (QEC). OLED devices using <strong>AA-DPK</strong> and <strong>AA-DPK-AA</strong> molecules as emitters with a widely used host material, 1,3-Bis(N-carbazolyl)benzene (<em>m</em>CP) exhibited green electroluminescence with higher EQEs of 8.5 % and 17 %, respectively. The <strong>AA-DPK-AA</strong> molecule demonstrated a two-fold improvement not only in EQEs and other parameters but also in thermal stability and photoluminescence quantum yield (PLQY). These enhancements contribute to the molecule's stability in OLEDs, resulting in low efficiency roll-off and high overall efficiency.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117831"},"PeriodicalIF":4.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143172401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Layer-by-layer self-assembly of copper oxide/graphene nanocomposites immobilized modified electrode for L-vanillin determination
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2025-01-13 DOI: 10.1016/j.synthmet.2025.117829
Rajendran Vivekananth , Rajendran Suresh Babu , Raji Atchudan , Yesudass Sasikumar , Ana Lucia Ferreira de Barros , Raman Kalaivani
{"title":"Layer-by-layer self-assembly of copper oxide/graphene nanocomposites immobilized modified electrode for L-vanillin determination","authors":"Rajendran Vivekananth ,&nbsp;Rajendran Suresh Babu ,&nbsp;Raji Atchudan ,&nbsp;Yesudass Sasikumar ,&nbsp;Ana Lucia Ferreira de Barros ,&nbsp;Raman Kalaivani","doi":"10.1016/j.synthmet.2025.117829","DOIUrl":"10.1016/j.synthmet.2025.117829","url":null,"abstract":"<div><div>In this study, a straightforward layer-by-layer self-assembled method was utilized to fabricate well-aligned copper oxide sandwiched graphene nanocomposite (CuOSG-NC) stacks through electrostatic attraction. The successful formation of densely packed CuOSG-NC structure was confirmed by field emission scanning electron microscopy and X-ray diffraction analysis. A simple, sensitive electrochemical approach was developed for the detection of L-vanillin, a widely used food preservative and potent antimicrobial agent, employing a CuOSG-NC modified graphite electrode. Cyclic voltammetry revealed that the CuOSG-NC modified electrode demonstrated outstanding electrocatalytic activity for the L-vanillin oxidation in 0.1 M NaOH electrolyte. Under optimal conditions, the oxidation peak current showed linearity with the vanillin concentration ranging from 3.3 × 10<sup>−6</sup> to 1<em>.</em>7 × 10<sup>−3</sup> M, achieving a limit of detection 1.1 × 10<sup>−6</sup> M (S/N = 3). The modified electrode for L-vanillin detection provided benefits including simple preparation, high sensitivity, and strong stability. Its practical use as an amperometric sensor for L-vanillin in flow systems was assessed through chronoamperometric analysis. Additionally, the modified electrode was effectively applied to determine vanillin in commercial roasted coffee bean samples, highlighting its potential for real-world applications in food products. Future research could explore the adaptation of this CuOSG-NC based electrochemical sensor for detecting other phenolic compounds or emerging contaminants, broadening its applications in food safety and environmental monitoring.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117829"},"PeriodicalIF":4.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colorimetric insights: Harnessing silver-doped graphitic carbon nitride for uric acid detection
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2025-01-13 DOI: 10.1016/j.synthmet.2025.117832
Noaman Khan , Saifullah Afridi , Mustafa Soylak , Muhammad Asad , Mansoor Khan , Mohibullah Shah , Naeem Khan , Riaz Ullah , Essam A. Ali , Wei Sun , Amir Badshah , Umar Nishan
{"title":"Colorimetric insights: Harnessing silver-doped graphitic carbon nitride for uric acid detection","authors":"Noaman Khan ,&nbsp;Saifullah Afridi ,&nbsp;Mustafa Soylak ,&nbsp;Muhammad Asad ,&nbsp;Mansoor Khan ,&nbsp;Mohibullah Shah ,&nbsp;Naeem Khan ,&nbsp;Riaz Ullah ,&nbsp;Essam A. Ali ,&nbsp;Wei Sun ,&nbsp;Amir Badshah ,&nbsp;Umar Nishan","doi":"10.1016/j.synthmet.2025.117832","DOIUrl":"10.1016/j.synthmet.2025.117832","url":null,"abstract":"<div><div>Uric acid serves as a vital diagnostic marker for various diseases like arthritis, gout, leukemia, etc. Accurate quantification is critical for effective diagnosis, monitoring, and management of various pathological conditions. Herein, we report the synthesis and characterization of two-dimensional silver-doped graphitic carbon nitride (Ag@g-C<sub>3</sub>N<sub>4</sub>) as a non-enzymatic colorimetric sensing platform for uric acid. The synthesis was confirmed through various spectroscopic techniques. Fourier-transform infrared spectroscopy (FTIR) showed the characteristic peaks for graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) and Ag@g-C<sub>3</sub>N<sub>4</sub> nanocomposite, whereas scanning electron microscopy (SEM) displayed the nanoporous morphology of the material. Energy-dispersive X-ray (EDX) and elemental mapping confirmed the presence of various constituent elements and their homogenous distribution respectively. The as-synthesized nanocomposite was used as a new colorimetric sensing platform for uric acid sensing employing 3,3′,5,5′-tetramethylbenzidine (TMB) as an indicating material. This fabricated sensing platform detected uric acid with excellent sensitivity (LOD, 0.12 µM), a wide linear range (1–81 µM) with R<sup>2</sup> = 0.998, and good selectivity. The proposed sensor worked best at 4 mg of the nanocomposite, pH 6, TMB 15 mM, and 20 mM of H<sub>2</sub>O<sub>2</sub>, with a response time of 150 seconds. Furthermore, the proposed sensor successfully detected uric acid in real urine sample solutions with good sensitivity and selectivity.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117832"},"PeriodicalIF":4.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodeposition of hierarchical NiZn layered double hydroxide nanosheet arrays on polyaniline for enhanced supercapacitor performance
IF 4 3区 材料科学
Synthetic Metals Pub Date : 2025-01-13 DOI: 10.1016/j.synthmet.2025.117830
Rassol Hamed Rasheed , Abdulrahman T. Ahmed , R. Khaurshead , Prakash Kanjariya , Asha Rajiv , Barno Abdullaeva , Aman Shankhyan , Kamal Kant Joshi , Abdulrahman A. Almehizia
{"title":"Electrodeposition of hierarchical NiZn layered double hydroxide nanosheet arrays on polyaniline for enhanced supercapacitor performance","authors":"Rassol Hamed Rasheed ,&nbsp;Abdulrahman T. Ahmed ,&nbsp;R. Khaurshead ,&nbsp;Prakash Kanjariya ,&nbsp;Asha Rajiv ,&nbsp;Barno Abdullaeva ,&nbsp;Aman Shankhyan ,&nbsp;Kamal Kant Joshi ,&nbsp;Abdulrahman A. Almehizia","doi":"10.1016/j.synthmet.2025.117830","DOIUrl":"10.1016/j.synthmet.2025.117830","url":null,"abstract":"<div><div>Current research in energy storage is primarily focused on innovating affordable electroactive materials with superior specific capacitance. We introduce a two-step, successful approach for developing hierarchical, binder-free arrays of NiZn-layered double hydroxide (LDH) nanosheets on polyaniline-coated copper sheet. The NiZn-LDH/PANI/Cu electrode material's structural and surface properties were analyzed using techniques such as FESEM, HRTEM, XPS, and XRD. In a two-electrode supercapacitor (SC) setup, electrochemical evaluations revealed the outstanding performance of the electrode. The sample achieved a maximum energy density of 32 Wh kg<sup>−1</sup>, a specific capacitance of 358.75 F g<sup>−1</sup>, and impressive cycling stability, maintaining 90 % of its capacitance after 5000 cycles. These findings highlight the potential of the NiZn-LDH/PANI/Cu SC as a viable energy storage solution. By leveraging the synergistic effects of the composite materials, this approach not only enhances energy density and capacitance but also ensures long-term stability and reliability. Ultimately, this work contributes to the development of advanced SC technologies that can meet the increasing demands for efficient and sustainable energy storage systems.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117830"},"PeriodicalIF":4.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信