SynapsePub Date : 2023-07-01Epub Date: 2023-03-04DOI: 10.1002/syn.22266
Yan Liu, Linming Zhang, Mingda Ai, Di Xia, Hongyu Chen, Ruijing Pang, Rong Mei, Lianmei Zhong, Ling Chen
{"title":"Upregulation of SLITRK5 in patients with epilepsy and in a rat model.","authors":"Yan Liu, Linming Zhang, Mingda Ai, Di Xia, Hongyu Chen, Ruijing Pang, Rong Mei, Lianmei Zhong, Ling Chen","doi":"10.1002/syn.22266","DOIUrl":"10.1002/syn.22266","url":null,"abstract":"<p><p>SLIT and NTRK-like protein-5 (SLITRK5) is one of the six members of SLITRK protein family, which is widely expressed in central nervous system (CNS). In brain, SLITRK5 plays important roles in neurite outgrowth, dendritic branching, neuron differentiation, synaptogenesis, and signal transmission of neurons. Epilepsy is a common, chronic neurological disorder characterized by recurrent spontaneous seizures. The pathophysiological mechanism of epilepsy remains unclear. Neuronal apoptosis, abnormal nerve excitatory transmission, and synaptic remodeling are thought to be involved in the development of epilepsy. To explore whether there is a potential relationship between SLITRK5 and epilepsy, we investigated the expression and distribution of SLITRK5 in patients with temporal lobe epilepsy (TLE) and a rat model of epilepsy. We collected cerebral cortex samples from patients with drug-refractory temporal lobe epilepsy, and a rat model of epilepsy induced by lithium chloride/pilocarpine was established. The ways of immunohistochemistry, double-immunofluorescence labeling and western blot have been used in our study to research the expression and distribution of SLITRK5 in the temporal lobe epilepsy patients and epilepsy animal model. All of the results have shown that SLITRK5 is mainly localized in the cell cytoplasm of neurons both in patients with TLE and in epilepsy model. In addition, compared with nonepileptic controls, the expression of SLITRK5 was upregulated in the temporal neocortex of TLE patients. And both in the temporal neocortex and hippocampus of pilocarpine-induced epilepsy rats, the expression of SLITRK5 was increased at 24 h after status epilepticus (SE), with a relatively high level within 30 days, and reached the peak on the 7th day after SE. Our preliminary results revealed that SLITRK5 may have a potential relationship with epilepsy, which may be a foundation for the further study of the underlying mechanism between SLITRK5 and epilepsy and the therapeutic targets of antiepileptic drugs.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 4","pages":"e22266"},"PeriodicalIF":2.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10069646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SynapsePub Date : 2023-07-01DOI: 10.1002/syn.22272
Gonzalo Flores, María de Jesús Gómez-Villalobos, Tommaso Iannitti, Julio César Morales-Medina
{"title":"Neonatal olfactory bulbectomy induces anxiety-related behavior and modifies dopaminergic receptor expression in post-pubertal rats.","authors":"Gonzalo Flores, María de Jesús Gómez-Villalobos, Tommaso Iannitti, Julio César Morales-Medina","doi":"10.1002/syn.22272","DOIUrl":"https://doi.org/10.1002/syn.22272","url":null,"abstract":"<p><p>Olfaction is a complex physiological process producing effects in the central nervous system (CNS) and implicated in emotional processes. Indeed, the olfactory bulbs (OB) send projections to various CNS regions including the nucleus accumbens (NAcc) and caudate-putamen (CPu). Both the NAcc and CPu receive important dopaminergic input. Emerging evidence suggests that dopamine (DA) is related to anxiety-related behaviors. Therefore, we aimed to investigate the consequences of neonatal olfactory bulbectomy (nOBX) to anxiety-related behavior as assayed in the elevated plus maze (EPM) as well as the expression of dopaminergic receptors (D1-like, D2-like, and D3) in the NAcc and CPu at pre- and post-pubertal ages in the rat. The results show that nOBX increased the number of entries in the open arm of the EPM post-pubertally, suggesting an anxiolytic-related effect. nOBX increased the D2-like binding in the NAcc shell and D3 binding in the NAcc core pre-pubertally. At post-pubertal ages, the D3 binding was reduced at the olfactory tubercle and islands of Calleja in nOBX rats. Alterations in the DA receptor expression may be one mechanism responsible for the observed behavioral modifications in nOBX rats.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 4","pages":"e22272"},"PeriodicalIF":2.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9516392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SynapsePub Date : 2023-07-01DOI: 10.1002/syn.22270
Mao-Qiang Tian, Juan Li, Xiao-Mei Shu, Chang-Hui Lang, Jing Chen, Long-Ying Peng, Wen-Ting Lei, Chang-Jian Yang
{"title":"The increase of Nrf2 m6A modification induced by FTO downregulation promotes hippocampal neuron injury and aggravates the progression of epilepsy in a rat model.","authors":"Mao-Qiang Tian, Juan Li, Xiao-Mei Shu, Chang-Hui Lang, Jing Chen, Long-Ying Peng, Wen-Ting Lei, Chang-Jian Yang","doi":"10.1002/syn.22270","DOIUrl":"https://doi.org/10.1002/syn.22270","url":null,"abstract":"<p><p>Epilepsy is a common chronic neurological disorder characterized by widespread neuronal death. The purpose of this study was to investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) m6A methylation in epilepsy. To create epileptic models, the rats were given Lithium chloride and pilocarpine, and isolated primary rat hippocampal neurons were cultured in an Mg2<sup>+</sup> -free medium. The frequency of seizures was recorded in the epilepsy group of rats. The functional tests included TUNEL, MTT, and flow cytometry. Mechanistically, RNA degradation assay, RNA immunoprecipitation, and methylated RNA immunoprecipitation were performed. In epileptic models, Nrf2 and fat mass and obesity-associated (FTO) levels were downregulated, whereas YT521-B homology (YTH) domain family protein 2 (YTHDF2) was upregulated. Additionally, in epileptic models, there was a rise in the m6A methylation level of Nrf2 mRNA. Overexpressing FTO increased cell viability and reduced apoptosis, but Nrf2 interference reversed these effects. Meanwhile, FTO overexpression decreased the m6A methylation of Nrf2 mRNA. Moreover, YTHDF2 bound to Nrf2 mRNA and decreased its stability. Furthermore, FTO overexpression reduced seizure frequency in rats and inhibited hippocampal neuron apoptosis via lowering the m6A methylation level of Nrf2 mRNA. Overexpressing FTO reduced m6A methylation of Nrf2 mRNA, increased cell viability, suppressed apoptosis, and slowed the progression of epileptic diseases, which is linked to YTHDF2 binding to m6A-modified Nrf2 and promoting its degradation, as well as downregulating Nrf2 expression in hippocampal neurons.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 4","pages":"e22270"},"PeriodicalIF":2.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9518968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SynapsePub Date : 2023-07-01DOI: 10.1002/syn.22271
Daniel Juarez, Ivan Arteaga, Haisha Cortes, Ruben Vazquez-Roque, Gustavo Lopez-Lopez, Gonzalo Flores, Samuel Treviño, Jorge Guevara, Alfonso Diaz
{"title":"Chronic resveratrol administration reduces oxidative stress and brain cell loss and improves memory of recognition in old rats.","authors":"Daniel Juarez, Ivan Arteaga, Haisha Cortes, Ruben Vazquez-Roque, Gustavo Lopez-Lopez, Gonzalo Flores, Samuel Treviño, Jorge Guevara, Alfonso Diaz","doi":"10.1002/syn.22271","DOIUrl":"https://doi.org/10.1002/syn.22271","url":null,"abstract":"<p><p>The cognitive functions of people over 60 years of age have been diminished, due to the structural and functional changes that the brain has during aging. The most evident changes are at the behavioral and cognitive level, with decreased learning capacity, recognition memory, and motor incoordination. The use of exogenous antioxidants has been implemented as a potential pharmacological option to delay the onset of brain aging by attenuating oxidative stress and neurodegeneration. Resveratrol (RSVL) is a polyphenol present in various foods, such as red fruits, and drinks, such as red wine. This compound has shown great antioxidant capacity due to its chemical structure. In this study, we evaluated the effect of chronic RSVL treatment on oxidative stress and cell loss in the prefrontal cortex, hippocampus, and cerebellum of 20-month-old rats, as well as its impact on recognition memory and motor behavior. Rats treated with RSVL showed an improvement in locomotor activity and in short- and long-term recognition memory. Likewise, the concentration of reactive oxygen species and lipid peroxidation decreased significantly in the group with RSVL, coupled with an improvement in the activity of the antioxidant system. Finally, with the help of hematoxylin and eosin staining, it was shown that chronic treatment with RSVL prevented cell loss in the brain regions studied. Our results demonstrate the antioxidant and neuroprotective capacity of RSVL when administered chronically. This strengthens the proposal that RSVL could be an important pharmacological option to reduce the incidence of neurodegenerative diseases that affect older adults.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 4","pages":"e22271"},"PeriodicalIF":2.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9567809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SynapsePub Date : 2023-05-01DOI: 10.1002/syn.22261
Rui Mao, Shihao Xu, Guangwen Sun, Yingying Yu, Zhiyi Zuo, Yuanyuan Wang, Kun Yang, Zhen Zhang, Wenqiong Yang
{"title":"Triptolide injection reduces Alzheimer's disease-like pathology in mice.","authors":"Rui Mao, Shihao Xu, Guangwen Sun, Yingying Yu, Zhiyi Zuo, Yuanyuan Wang, Kun Yang, Zhen Zhang, Wenqiong Yang","doi":"10.1002/syn.22261","DOIUrl":"https://doi.org/10.1002/syn.22261","url":null,"abstract":"<p><p>Triptolide is an epoxidized diterpene lactone isolated from Tripterygium wilfordii. Studies have shown that triptolide exerts organ-protective effects. However, it remains unknown whether triptolide improves Alzheimer's disease (AD)-like presentations. Thirty healthy 8-week-old male C57BL/6J mice were randomly divided into control (n = 10), model (n = 10), and triptolide (n = 10) groups. Amyloid-β (Aβ)42 was injected bilaterally into the ventricles of mice in the model group. Triptolide was injected intraperitoneally daily after injecting Aβ42 (a total of 30 days) in the triptolide group. Learning and memory were tested using the Morris water maze test. The deposition of Aβ42 in the hippocampus was detected using immunohistochemical staining. In the hippocampus, three synaptic-associated proteins-gephyrin, collybistin, and GABRA<sub>1</sub> -were detected by western blotting. Furthermore, we used ELISA to detect proinflammatory cytokines, including TNF-α and IL-1β, in the blood and hippocampus. Moreover, superoxide dismutase (SOD), malondialdehyde (MDA), and GSH levels were measured using the corresponding kits. We found that triptolide improved spatial learning and memory in AD-like mice. Additionally, triptolide maintained the expression of gephyrin, collybistin, and GABRA<sub>1</sub> and reduced Aβ in these mice. Additionally, triptolide reduced the expression of inflammatory cytokines and decreased oxidative damage in AD-like mice. Our study suggests that triptolide attenuates AD-like changes in the mouse brain.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 3","pages":"e22261"},"PeriodicalIF":2.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9617308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SynapsePub Date : 2023-05-01DOI: 10.1002/syn.22263
N Villalobos, E Ramírez-Sánchez, A Mondragón-García, J Garduño, D Castillo-Rolón, S Trujeque-Ramos, S Hernández-López
{"title":"Insulin decreases epileptiform activity in rat layer 5/6 prefrontal cortex in vitro.","authors":"N Villalobos, E Ramírez-Sánchez, A Mondragón-García, J Garduño, D Castillo-Rolón, S Trujeque-Ramos, S Hernández-López","doi":"10.1002/syn.22263","DOIUrl":"https://doi.org/10.1002/syn.22263","url":null,"abstract":"<p><p>Accumulating evidence indicates that insulin-mediated signaling in the brain may play important roles in regulating neuronal function. Alterations to insulin signaling are associated with the development of neurological disorders including Alzheimer's disease and Parkinson's disease. Also, hyperglycemia and insulin resistance have been associated with seizure activity and brain injury. In recent work, we found that insulin increased inhibitory GABA<sub>A</sub> -mediated tonic currents in the prefrontal cortex (PFC). In this work, we used local field potential recordings and calcium imaging to investigate the effect of insulin on seizure-like activity in PFC slices. Seizure-like events (SLEs) were induced by perfusing the slices with magnesium-free artificial cerebrospinal fluid (ACSF) containing the proconvulsive compound 4-aminopyridine (4-AP). We found that insulin decreased the frequency, amplitude, and duration of SLEs as well as the synchronic activity of PFC neurons evoked by 4-AP. These insulin effects were mediated by the PI3K/Akt signaling pathway and mimicked by gaboxadol (THIP), a δ GABA<sub>A</sub> receptor agonist. The effect of insulin on the number of SLEs was partially blocked by L-655,708, an inverse agonist with high selectivity for GABA<sub>A</sub> receptors containing the α5 subunit. Our results suggest that insulin reduces neuronal excitability by an increase of GABAergic tonic currents. The physiological relevance of these findings is discussed.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 3","pages":"e22263"},"PeriodicalIF":2.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9268434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SynapsePub Date : 2023-05-01Epub Date: 2023-02-23DOI: 10.1002/syn.22265
Christopher Liang, Grace A Nguyen, Tram B Danh, Anoopraj K Sandhu, Lusine L Melkonyan, Amina U Syed, Jogeshwar Mukherjee
{"title":"Abnormal [<sup>18</sup> F]NIFENE binding in transgenic 5xFAD mouse model of Alzheimer's disease: In vivo PET/CT imaging studies of α4β2* nicotinic acetylcholinergic receptors and in vitro correlations with Aβ plaques.","authors":"Christopher Liang, Grace A Nguyen, Tram B Danh, Anoopraj K Sandhu, Lusine L Melkonyan, Amina U Syed, Jogeshwar Mukherjee","doi":"10.1002/syn.22265","DOIUrl":"10.1002/syn.22265","url":null,"abstract":"<p><p>Since cholinergic dysfunction has been implicated in Alzheimer's disease (AD), the effects of Aβ plaques on nicotinic acetylcholine receptors (nAChRs) α4β2* subtype were studied using the transgenic 5xFAD mouse model of AD. Using the PET radiotracer [<sup>18</sup> F]nifene for α4β2* nAChRs, in vitro autoradiography and in vivo PET/CT studies in 5xFAD mice were carried out and compared with wild-type (C57BL/6) mice. Ratios of [<sup>18</sup> F]nifene binding in brain regions versus cerebellum (CB) in 5xFAD mice brains were for thalamus (TH) = 17, hippocampus-subiculum = 7, frontal cortex (FC) = 5.5, and striatum = 4.7. [<sup>125</sup> I]IBETA and immunohistochemistry (IHC) in 5xFAD brain slices confirmed Aβ plaques. Nicotine and acetylcholine displaced [<sup>18</sup> F]nifene in 5xFAD mice (IC<sub>50</sub> nicotine = 31-73 nM; ACh = 38-83 nM) and C57BL/6 (IC<sub>50</sub> nicotine = 16-18 nM; ACh = 34-55 nM). Average [<sup>18</sup> F]nifene SUVR (CB as reference) in 5xFAD mice was significantly higher in FC = 3.04 compared to C57BL/6 mice FC = 1.92 (p = .001), whereas TH difference between 5xFAD mice (SUVR = 2.58) and C57BL/6 mice (SUVR = 2.38) was not significant. Nicotine-induced dissociation half life (t<sub>1/2</sub> ) of [<sup>18</sup> F]nifene for TH were 37 min for 5xFAD mice and 26 min for C57BL/6 mice. Dissociation half life for FC in C57BL/6 mice was 77 min , while no dissociation of [<sup>18</sup> F]nifene occurred in the medial prefrontal cortex (mFC) of 5xFAD mice. Coregistration of [<sup>18</sup> F]nifene PET with MR suggested that the mPFC, and anterior cingulate (AC) regions exhibited high uptake in 5xFAD mice compared to C57BL/6 mice. Ex vivo [<sup>18</sup> F]nifene and in vitro [<sup>125</sup> I]IBETA Aβ plaque autoradiography after in vivo PET/CT scan of 5xFAD mouse brain were moderately correlated (r<sup>2</sup> = 0.68). In conclusion, 5xFAD mice showed increased non-displaceable [<sup>18</sup> F]nifene binding in mPFC.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 3","pages":"e22265"},"PeriodicalIF":1.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148164/pdf/nihms-1890633.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9735223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SynapsePub Date : 2023-05-01Epub Date: 2023-02-18DOI: 10.1002/syn.22264
Asma B Salek, Emily T Claeboe, Ruchi Bansal, Nicolas F Berbari, Anthony J Baucum
{"title":"Spinophilin-dependent regulation of GluN2B-containing NMDAR-dependent calcium influx, GluN2B surface expression, and cleaved caspase expression.","authors":"Asma B Salek, Emily T Claeboe, Ruchi Bansal, Nicolas F Berbari, Anthony J Baucum","doi":"10.1002/syn.22264","DOIUrl":"10.1002/syn.22264","url":null,"abstract":"<p><p>N-methyl-d-aspartate receptors (NMDARs) are calcium-permeable ion channels that are ubiquitously expressed within the glutamatergic postsynaptic density. Phosphorylation of NMDAR subunits defines receptor conductance and surface localization, two alterations that can modulate overall channel activity. Modulation of NMDAR phosphorylation by kinases and phosphatases regulates the amount of calcium entering the cell and subsequent activation of calcium-dependent processes. The dendritic spine enriched protein, spinophilin, is the major synaptic protein phosphatase 1 (PP1) targeting protein. Depending on the substrate, spinophilin can act as either a PP1 targeting protein, to permit substrate dephosphorylation, or a PP1 inhibitory protein, to enhance substrate phosphorylation. Spinophilin limits NMDAR function in a PP1-dependent manner. Specifically, we have previously shown that spinophilin sequesters PP1 away from the GluN2B subunit of the NMDAR, which results in increased phosphorylation of Ser-1284 on GluN2B. However, how spinophilin modifies NMDAR function is unclear. Herein, we utilize a Neuro2A cell line to detail that Ser-1284 phosphorylation increases calcium influx via GluN2B-containing NMDARs. Moreover, overexpression of spinophilin decreases GluN2B-containing NMDAR activity by decreasing its surface expression, an effect that is independent of Ser-1284 phosphorylation. In hippocampal neurons isolated from spinophilin knockout animals, there is an increase in cleaved caspase-3 levels, a marker of calcium-associated apoptosis, compared with wildtype mice. Taken together, our data demonstrate that spinophilin regulates GluN2B containing NMDAR phosphorylation, channel function, and trafficking and that loss of spinophilin enhances neuronal cleaved caspase-3 expression.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 3","pages":"e22264"},"PeriodicalIF":1.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9842645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SynapsePub Date : 2023-05-01DOI: 10.1002/syn.22262
Hiroki Kawashima, Yuri Aono, Shigeki Shimba, John L Waddington, Tadashi Saigusa
{"title":"Adolescence as a critical period for nandrolone-induced muscular strength in relation to abuse liability, alone and in conjunction with morphine, using accumbal dopamine efflux in freely moving rats.","authors":"Hiroki Kawashima, Yuri Aono, Shigeki Shimba, John L Waddington, Tadashi Saigusa","doi":"10.1002/syn.22262","DOIUrl":"https://doi.org/10.1002/syn.22262","url":null,"abstract":"<p><p>Nandrolone, an anabolic androgenic steroid, is included in the prohibited list of the World Anti-Doping Agency. Drugs of abuse activate brain dopamine neurons and nandrolone has been suspected of inducing dependence. Accordingly, possible critical periods for the effects of nandrolone on muscular strength and dopaminergic activity have been investigated, including the effects of chronically administered nandrolone alone and on morphine-induced increases in dopamine efflux in the nucleus accumbens. Six- or 10-week-old male Sprague-Dawley rats were used. Treatment with nandrolone was initiated in adolescent (6-week-old) and young adult (10-week-old) rats. Nandrolone (5.0 mg/kg s.c.) or sesame oil vehicle was given once daily, on six consecutive days per week, for 3 weeks and then once per day for 4 consecutive days. Nandrolone enhanced the developmental increase in grip strength of 6- but not 10-week-old rats, without altering the developmental increase in body weight of either age group. Using in vivo microdialysis in freely moving 6-week-old rats given nandrolone for 4 weeks, basal accumbal dopamine efflux was unaltered, while the increase in dopamine efflux induced by acute administration of morphine (1.0 mg/kg s.c.) was reduced. The present study provides in vivo evidence that adolescence constitutes a critical period during which repeated administration of nandrolone enhances increases in muscular strength without influencing increases in body weight. Though repeated administration of nandrolone during this period of adolescence did not stimulate in vivo mesolimbic dopaminergic activity, it disrupted stimulation by an opioid, the drug class that is most commonly coabused with nandrolone.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 3","pages":"e22262"},"PeriodicalIF":2.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9617312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}