α7 nicotinic acetylcholine receptors induce long-term synaptic enhancement in the dorsal but not ventral hippocampus

IF 1.6 4区 医学 Q4 NEUROSCIENCES
Synapse Pub Date : 2024-01-08 DOI:10.1002/syn.22285
Giota Tsotsokou, Vasiliki Kouri, Costas Papatheodoropoulos
{"title":"α7 nicotinic acetylcholine receptors induce long-term synaptic enhancement in the dorsal but not ventral hippocampus","authors":"Giota Tsotsokou, Vasiliki Kouri, Costas Papatheodoropoulos","doi":"10.1002/syn.22285","DOIUrl":null,"url":null,"abstract":"Agents that positively modulate the activity of α7nAChRs are used as cognitive enhancers and for the treatment of hippocampus-dependent functional decline. However, it is not known whether the expression and the effects of α7nAChRs apply to the entire longitudinal axis of the hippocampus equally. Given that cholinergic system-involving hippocampal functions are not equally distributed along the hippocampus, we comparatively examined the expression and the effects of α7nAChRs on excitatory synaptic transmission between the dorsal and the ventral hippocampal slices from adult rats. We found that α7nAChRs are equally expressed in the CA1 field of the two segments of the hippocampus. However, activation of α7nAChRs by their highly selective agonist PNU 282987 induced a gradually developing increase in field excitatory postsynaptic potential only in the dorsal hippocampus. This long-term potentiation was not reversed upon application of nonselective nicotinic receptor antagonist mecamylamine, but the induction of potentiation was prevented by prior blockade of α7nAChRs by their antagonist MG 624. In contrast to the long-term synaptic plasticity, we found that α7nAChRs did not modulate short-term synaptic plasticity in either the dorsal or the ventral hippocampus. These results may have implications for the role that α7nAChRs play in specifically modulating functions that depend on the normal function of the dorsal hippocampus. We propose that hippocampal functions that rely on a direct α7 nAChR-mediated persistent enhancement of glutamatergic synaptic transmission are preferably supported by dorsal but not ventral hippocampal synapses.","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"2 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synapse","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/syn.22285","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Agents that positively modulate the activity of α7nAChRs are used as cognitive enhancers and for the treatment of hippocampus-dependent functional decline. However, it is not known whether the expression and the effects of α7nAChRs apply to the entire longitudinal axis of the hippocampus equally. Given that cholinergic system-involving hippocampal functions are not equally distributed along the hippocampus, we comparatively examined the expression and the effects of α7nAChRs on excitatory synaptic transmission between the dorsal and the ventral hippocampal slices from adult rats. We found that α7nAChRs are equally expressed in the CA1 field of the two segments of the hippocampus. However, activation of α7nAChRs by their highly selective agonist PNU 282987 induced a gradually developing increase in field excitatory postsynaptic potential only in the dorsal hippocampus. This long-term potentiation was not reversed upon application of nonselective nicotinic receptor antagonist mecamylamine, but the induction of potentiation was prevented by prior blockade of α7nAChRs by their antagonist MG 624. In contrast to the long-term synaptic plasticity, we found that α7nAChRs did not modulate short-term synaptic plasticity in either the dorsal or the ventral hippocampus. These results may have implications for the role that α7nAChRs play in specifically modulating functions that depend on the normal function of the dorsal hippocampus. We propose that hippocampal functions that rely on a direct α7 nAChR-mediated persistent enhancement of glutamatergic synaptic transmission are preferably supported by dorsal but not ventral hippocampal synapses.

Abstract Image

α7烟碱乙酰胆碱受体诱导海马背侧而非腹侧的长期突触增强
积极调节α7nAChRs活性的药物被用作认知增强剂和治疗海马依赖性功能衰退的药物。然而,α7nAChRs 的表达和作用是否同样适用于海马的整个纵轴尚不清楚。鉴于胆碱能系统参与的海马功能在海马上的分布并不均等,我们比较研究了α7nAChRs在成年大鼠海马背侧和腹侧切片之间兴奋性突触传递的表达和影响。我们发现,α7nAChRs在海马两个区段的CA1区域中表达相同。然而,α7nAChRs的高选择性激动剂PNU 282987激活α7nAChRs后,仅在海马背侧引起场兴奋突触后电位逐渐升高。使用非选择性烟碱受体拮抗剂麦卡米拉明不会逆转这种长期电位,但事先用α7nAChRs拮抗剂MG 624阻断α7nAChRs可阻止电位的诱导。与长期突触可塑性相反,我们发现α7nAChRs并不调节海马背侧或腹侧的短期突触可塑性。这些结果可能对α7nAChRs在特异性调节依赖于背侧海马正常功能的功能方面所起的作用有影响。我们认为,依赖于α7 nAChR直接介导的持续增强谷氨酸能突触传递的海马功能最好由背侧海马突触而非腹侧海马突触来支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Synapse
Synapse 医学-神经科学
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
4-8 weeks
期刊介绍: SYNAPSE publishes articles concerned with all aspects of synaptic structure and function. This includes neurotransmitters, neuropeptides, neuromodulators, receptors, gap junctions, metabolism, plasticity, circuitry, mathematical modeling, ion channels, patch recording, single unit recording, development, behavior, pathology, toxicology, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信