Plant BiologyPub Date : 2025-03-17DOI: 10.1111/plb.70012
G Quagliata, M D G Molina, G Mannino, E Coppa, M N Saidi, S Palombieri, F Sestili, G Vigani, S Astolfi
{"title":"Drought affects Fe deficiency-induced responses in a purple durum wheat (Triticum turgidum subsp. durum) genotype.","authors":"G Quagliata, M D G Molina, G Mannino, E Coppa, M N Saidi, S Palombieri, F Sestili, G Vigani, S Astolfi","doi":"10.1111/plb.70012","DOIUrl":"https://doi.org/10.1111/plb.70012","url":null,"abstract":"<p><p>Iron (Fe) is essential for plants and humans, with over 2 billion people suffering deficiency disorders because most plant foods, including cereals, are low in Fe. Durum wheat, a staple crop in Mediterranean regions, is facing increased droughts, which reduce plant yield and ability to acquire and use Fe. Therefore, understanding mechanisms underlying Fe acquisition and accumulation in durum wheat under drought is essential for both agronomic and nutritional purposes. Here, a durum wheat (Triticum turgidum subsp. durum) genotype with a purple grain pericarp was grown hydroponically under adequate (80 μM) or limited (10 μM) Fe, with or without water stress (induced with 10% PEG 6000) for 6 days. Fe accumulation decreased under Fe deficiency and drought, with the highest phytosiderophore (PS) release in Fe-deficient plants. Interestingly, despite adequate Fe availability, drought inhibited Fe accumulation in roots. This response was accompanied by increased release of PS from roots, although the increase was less than that observed with single or combined Fe deficiency. Both TdIRT1 and TdYS15 were upregulated by Fe deficiency but downregulated by drought and the combined stress. Drought stress and Fe deficiency led to increased ABA production, being 250-fold higher with respect to controls. TdIRT1 downregulation in plants exposed to the combined stress suggests a trade-off between water and Fe stress responses. Our findings demonstrate that the response to combined stress differs from, and is rarely additive to, the response to a single stressor, reinforcing the complexity of plant adaptation to combined environmental stresses.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-03-17DOI: 10.1111/plb.70001
B Ni, M Klein, B Hossbach, K Feussner, E Hornung, C Herrfurth, M Hamberg, I Feussner
{"title":"Arabidopsis GH3.10 conjugates jasmonates.","authors":"B Ni, M Klein, B Hossbach, K Feussner, E Hornung, C Herrfurth, M Hamberg, I Feussner","doi":"10.1111/plb.70001","DOIUrl":"https://doi.org/10.1111/plb.70001","url":null,"abstract":"<p><p>Jasmonates regulate plant development and defence. In angiosperms, the canonical bioactive jasmonate is jasmonoyl-isoleucine (JA-Ile), which is formed in Arabidopsis thaliana by JAR1 and GH3.10. In contrast to other jasmonate biosynthesis or perception mutants, however, gh3.10 jar1 knockout lines are still fertile. Therefore we investigated whether further jasmonates and GH3 enzymes contribute to regulation of fertility. Jasmonate levels were analysed by liquid chromatography-mass spectrometry. The substrate range of recombinant GH3.10 and related GH3 enzymes was studied using non-targeted ex vivo metabolomics with flower and leaf extracts of A. thaliana and in vitro enzyme assays. Jasmonate application experiments were performed to study their potential bioactivity. In flowers and wounded leaves of gh3.10 jar1 knockout lines JA-Ile was below the detection limit. While 12-hydroxy-JA was identified as the preferred substrate of GH3.10, no other recombinant GH3 enzymes tested were capable of JA-Ile formation. Additional JA conjugates found in wounded leaves (JA-Gln) or formed in flowers upon MeJA treatment in the absence of JA-Ile (JA-Gln, JA-Asn, JA-Glu) were identified. The aos gh3.10 jar1 was introduced as a novel tool to test for the bioactivity of JA-Gln to regulate fertility. This study found JAR1 and GH3.10 are the only contributors to JA-Ile biosynthesis in Arabidopsis and identified a number of JA conjugates as potential bioactive jasmonates acting in the absence of JA-Ile. However, their contribution in regulating fertility is yet to be conclusively determined.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-03-17DOI: 10.1111/plb.70014
K Suetsugu, H Okada
{"title":"Green, variegated, and albino Cremastra variabilis provide insight into mycoheterotrophic evolution associated with wood-decaying fungi.","authors":"K Suetsugu, H Okada","doi":"10.1111/plb.70014","DOIUrl":"https://doi.org/10.1111/plb.70014","url":null,"abstract":"<p><p>With approximately 31,000 species, orchids begin life as mycoheterotrophs, relying on fungi to meet their carbon demands. Notably, some green orchids retain the ability to acquire carbon through fungal associations (partial mycoheterotrophy) and occasionally produce albino or, more rarely, variegated phenotypes. A linear relationship has been observed between leaf chlorophyll content and dependence on fungal-derived carbon, particularly in orchids associated with ectomycorrhizal (ECM) fungi, but whether such plasticity is similarly robust among orchids associated with non-ECM fungi remains underexplored. Here, we focused on the green, variegated, and albino forms of Cremastra variabilis, which likely lack ECM associations, to investigate (i) whether the degree of mycoheterotrophy, indicated by <sup>13</sup>C enrichment, correlates with chlorophyll content, and (ii) whether nutritional shifts align with changes in plant structure and mycorrhizal communities. Our results show that rhizoctonia fungi were dominant in green individuals with high chlorophyll levels and lacking coralloid rhizomes, whereas albino and most variegated individuals possessing coralloid rhizomes primarily associate with Psathyrellaceae fungi. Chlorophyll content and carbon stable isotope abundances were negatively correlated, indicating a gradient of increasing mycoheterotrophy from green to albino forms in individuals with coralloid rhizomes. In conclusion, C. variabilis maintains a flexible balance between photosynthesis and mycoheterotrophy, likely shaped by its subterranean morphology and fungal associations, with wood-decaying Psathyrellaceae fungi providing greater support for mycoheterotrophic nutrition than rhizoctonia fungi.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-03-17DOI: 10.1111/plb.70004
K Suetsugu, H Okada, M Suleiman, H Tsukaya
{"title":"Partial mycoheterotrophy in Apostasia wallichii, an early-diverging Asian tropical orchid.","authors":"K Suetsugu, H Okada, M Suleiman, H Tsukaya","doi":"10.1111/plb.70004","DOIUrl":"https://doi.org/10.1111/plb.70004","url":null,"abstract":"<p><p>All orchids exhibit mycoheterotrophy during their early development stages, which predisposes certain species to retain this nutritional mode into adulthood. Consequently, many orchids adopt partial mycoheterotrophy, a mixotrophic strategy combining carbon acquisition through both autotrophy and mycoheterotrophy. However, whether this strategy represents an ancestral trait remains contested. This study examines the fungal symbionts and nutritional strategies of the early-diverging orchid Apostasia wallichii and a sympatric, photosynthetic orchid, Cystorchis variegata, in tropical Asia (Sabah, Malaysian Borneo). Specifically, we explored their potential nutritional modes and mycobionts by analysing δ<sup>13</sup>C and δ<sup>15</sup>N isotopic profiles and employing high-throughput DNA sequencing. Community profiling via metabarcoding revealed that the A. wallichii individuals investigated were predominantly associated with putatively saprotrophic Botryobasidium fungi, while C. variegata was simultaneously associated with non-ectomycorrhizal rhizoctonias, saprotrophic non-rhizoctonia fungi, and ectomycorrhizal fungi. Additionally, stable isotope analysis showed that both A. wallichii and C. variegata were significantly enriched in <sup>13</sup>C and <sup>15</sup>N compared to co-occurring autotrophic plants, indicating partial mycoheterotrophy. Our findings, particularly the discovery of partial mycoheterotrophy associated with non-ectomycorrhizal fungi in A. wallichii, suggest that partial mycoheterotrophy in green orchids may be more widespread than previously believed and could represent an ancestral trait intrinsic to orchids.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-03-10DOI: 10.1111/plb.13775
O. De Castro, C. Piazza, E. Di Iorio, G. Bacchetta, B. Menale
{"title":"Impact of barriers on Cyrno-Sardinian endemisms: A comparative study of population genetics and phylogeography within taxa of Centranthus sect. Nervosae (Caprifoliaceae)","authors":"O. De Castro, C. Piazza, E. Di Iorio, G. Bacchetta, B. Menale","doi":"10.1111/plb.13775","DOIUrl":"10.1111/plb.13775","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":"27 3","pages":"362-377"},"PeriodicalIF":4.2,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/plb.13775","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-03-04DOI: 10.1111/plb.70007
{"title":"Correction to \"CAX control: multiple roles of vacuolar cation/H<sup>+</sup> exchangers in metal tolerance, mineral nutrition and environmental signalling\".","authors":"","doi":"10.1111/plb.70007","DOIUrl":"https://doi.org/10.1111/plb.70007","url":null,"abstract":"","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143539621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-03-04DOI: 10.1111/plb.70005
A. J. Kowalski, T. P. Wyka
{"title":"Narrow vessels – a hallmark of frost-adapted evergreen leaves","authors":"A. J. Kowalski, T. P. Wyka","doi":"10.1111/plb.70005","DOIUrl":"10.1111/plb.70005","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":"27 3","pages":"434-442"},"PeriodicalIF":4.2,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143539546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-02-27DOI: 10.1111/plb.70003
R. W. Masuelli, N. Cara, P. C. Kozub
{"title":"Unveiling the hidden codes: a review of variability and ecological epigenetics after 20 years of studies on potato","authors":"R. W. Masuelli, N. Cara, P. C. Kozub","doi":"10.1111/plb.70003","DOIUrl":"10.1111/plb.70003","url":null,"abstract":"<p>The cultivated potato <i>Solanum tuberosum</i> subsp. <i>tuberosum</i> L. retains an important reservoir of genetic diversity in its secondary gene pool. More than 100 wild species of potato, with ploidies from 2x to 6x, grow in the Americas. These species are adapted to contrasting environments, showing wide phenotypic diversity in leaf, floral, and tuber morphology. The taxonomic relationship among species is not clear, mainly due to little chromosomal differentiation and pervasive interspecific hybridization. This review summarizes data from more than 20 years of studies on genetic and epigenetic variability of potato species, highlighting the importance of epigenetic variability, hybridization, and polyploidization in the evolution and diversification of this group. The epigenetic diversity of these species remains poorly characterized. This review addresses the ecological implications of epigenetic variation, emphasizing its role in plant adaptation to changing environments. Finally, the study proposes a model that integrates epigenetic variability into the evolution of natural potato populations, highlighting its potential for rapid adaptation and phenotypic differentiation.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":"27 3","pages":"325-332"},"PeriodicalIF":4.2,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}