Plant BiologyPub Date : 2025-01-01Epub Date: 2024-10-30DOI: 10.1111/plb.13733
M A Lehrer, R Govindarajulu, F Smith, J S Hawkins
{"title":"Shifts in plant architecture drive species-specific responses to drought in a Sorghum recombinant inbred line population.","authors":"M A Lehrer, R Govindarajulu, F Smith, J S Hawkins","doi":"10.1111/plb.13733","DOIUrl":"10.1111/plb.13733","url":null,"abstract":"<p><p>Drought stress severely impedes plant growth, development, and yield. Therefore, it is critical to uncover the genetic mechanisms underlying drought resistance to ensure future food security. To identify the genetic controls of these responses in Sorghum, an agriculturally and economically important grain crop, an interspecific recombinant inbred line (RIL) population was established by crossing a domesticated inbred line of Sorghum bicolor (TX7000) with its wild relative, Sorghum propinquum. This RIL population was evaluated under drought conditions, allowing for the identification of quantitative trait loci (QTL) that contribute to drought resistance. We detected eight QTL in the drought population that explain a significant portion of the observed variation for four traits (height, aboveground biomass, relative water content, and leaf temperature/transpiration). The allelic effects of, and the candidate genes within, these QTL emphasize: (1) the influence of domestication on drought-responsive phenotypes, such as height and aboveground biomass, and (2) how control of water uptake and/or loss can be driven by species-specific plant architecture. Our findings shed light on the interconnected roles of shoot and root responses in drought resistance as it relates to regulation of water uptake and/or loss, while the detected allelic effects demonstrate how maintenance of grain production and yield under drought is a likely result of domestication-derived drought tolerance.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":"125-133"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-01-01Epub Date: 2024-11-07DOI: 10.1111/plb.13735
L Zhao, Z Luo, Z Hu, Y Zhang, T Zhao, Y Zhong, X Wang
{"title":"Linking phylogenetic niche conservatism in bacterial communities in sorghum root compartments revealed by the Hongyingzi cultivar.","authors":"L Zhao, Z Luo, Z Hu, Y Zhang, T Zhao, Y Zhong, X Wang","doi":"10.1111/plb.13735","DOIUrl":"10.1111/plb.13735","url":null,"abstract":"<p><p>The root system harbours complex bacterial communities, which are critical for plant growth and health. Significant differences exist between bacterial communities in the root compartments; however, limited reports have explored their phylogenetic composition and niche conservatism in the root system of sorghum. We used the sorghum Hongyingzi cultivar as test plant, and applied 16S rRNA high-throughput sequencing and various statistical approaches. Phylogenetic composition of bacterial communities in root compartments were primarily driven by closely related species with similar environmental adaptations. We also found evidence of phylogenetic niche conservatism in bacterial communities for edaphic factors in the various root compartments, with pH and available N playing essential roles in shaping community composition. Environmental threshold analysis revealed threshold ranges of dominant taxa for pH and available N, indicating wider adaptive thresholds for more abundant taxa. Reconstruction of ancestral states suggested evolutionary changes in adaptability of certain bacterial taxa to edaphic factors, suggesting a shift towards slightly acidic, high N environments and reflecting the prolonged mutual interaction between bacteria and plants in cultivated soils. These findings enhance our understanding of environmental responses and evolutionary dynamics of root-associated microbiota in young sorghum plants and provide novel insights into ecological adaptations, shedding light on their responses to environmental factors. Our study contributes to a better understanding of the ecological dynamics of root-associated microbiota and offers analytical pathways for exploring the nutritional regulation of root microbiota.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":"134-145"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-01-01Epub Date: 2024-11-05DOI: 10.1111/plb.13737
L Guo, J Lai, T Lei, C Liu, J Li, L Yang, S Gao
{"title":"Ethyl methanesulfonate (EMS) mediated dwarfing mutation provides a basis for CaCO<sub>3</sub> accumulation by enhancing photosynthetic performance in Ceratostigma willmottianum Stapf.","authors":"L Guo, J Lai, T Lei, C Liu, J Li, L Yang, S Gao","doi":"10.1111/plb.13737","DOIUrl":"10.1111/plb.13737","url":null,"abstract":"<p><p>Ceratostigma willmottianum Stapf is a unique chalk gland (salt-excreting) plant from China, with a salt gland structure that excretes white crystals of calcium carbonate (CaCO<sub>3</sub>), which has potential biomineralization and carbon sequestration functions. Due to the narrow distribution of wild germplasm resources, there is a lack of diversity of new varieties to satisfy commercial development and scientific exploration. Therefore, we used ethyl methanesulfonate (EMS) mutagenesis to obtain new dwarf mutant germplasm, and analysed it in terms of morphology, growth, photosynthesis, salt glands, and excretion traits. All four dwarfing mutant strains (DM1, DM2, DM3, and DM4) exhibited extreme dwarfing (62.28%, 62.28%, 74.55% and 61.68% reduction in plant height, respectively), faster growth, increased belowground root biomass, and earlier bud differentiation and flowering. Photosynthetic capacity was enhanced: chlorophyll content, maximum quantum yield of PSII (Fv/Fm), effective quantum yield of PSII (ΦPSII), photochemical quenching coefficient (qP), electron transfer rate (ETR), net photosynthesis (Pn), intercellular CO<sub>2</sub> concentration (Ci), stomatal conductance (Gs), and transpiration (Tr), were significantly higher in leaves of DM mutants. The density of salt glands per unit leaf area and average Ca<sup>2+</sup> excretion rate of individual salt glands increased significantly (especially in DM2), and CaCO<sub>3</sub> accumulation per unit leaf area was 28.57% higher than that of the wild type. Pearson correlation analysis showed that photosynthetic capacity was significantly and positively correlated with CaCO<sub>3</sub> excretion. The above study not only provided enriched new germplasm of C. willmottianum, but also important research material for studying the mechanism of CaCO<sub>3</sub> excretion by salt glands and carbon sequestration capacity of biomineralization.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":"66-78"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-01-01Epub Date: 2024-10-30DOI: 10.1111/plb.13727
Y Li, Y Wang, Z Wang, G Liu, R Chang, H Chen, J Li, Q Tian
{"title":"Metabolite analysis of peach (Prunus persica L. Batsch) branches in response to freezing stress.","authors":"Y Li, Y Wang, Z Wang, G Liu, R Chang, H Chen, J Li, Q Tian","doi":"10.1111/plb.13727","DOIUrl":"10.1111/plb.13727","url":null,"abstract":"<p><p>Cold resistance in fruit trees has a direct impact on food production and scientific studies. 'Donghe No.1' is an excellent cold-tolerant peach variety. Metabolomic changes under freezing stress were examined to understand the mechanisms of cold adaptation. The UPLC-MS/MS system was used to identify differentially expressed metabolites (DEMs) in branches of 'Donghe No.1' under freezing stress for 12 h at -5°C, -20°C, -25°C, or -30°C. In total, 1096 metabolites and 196 DEMs were obtained at -5°C vs -20°C, -25°C, and - 30°C, while 179 DEMs and eight shared DEMs obtained at -5°C vs -20°C, -20°C vs -25°C, and -25°C vs -30°C. KEGG enrichment identified 196 DEMs associated with amino acid metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis under freezing stress. A metabolic network in 1-year-old peach branches under freezing stress is proposed. Moreover, these results enhance understanding of metabolite responses and mechanisms to freezing stress in peach and will help in future breeding of freezing-tolerant varieties and investigating tolerance mechanisms.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":"92-101"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-01-01Epub Date: 2024-12-04DOI: 10.1111/plb.13747
M Höfer, M Schäfer, Y Wang, S Wink, S Xu
{"title":"Genome-wide association study of metabolic traits in the giant duckweed Spirodela polyrhiza.","authors":"M Höfer, M Schäfer, Y Wang, S Wink, S Xu","doi":"10.1111/plb.13747","DOIUrl":"10.1111/plb.13747","url":null,"abstract":"<p><p>The exceptionally high growth rate and high flavonoid content make the giant duckweed Spirodela polyrhiza (L.) Schleid. (Arales: Lemnaceae Martinov) an ideal organism for food production and metabolic engineering. To facilitate this, identification of the genetic basis underlying growth and metabolic traits is essential. Here, we analysed growth and content of 42 metabolites in 137 S. polyrhiza genotypes and characterized the genetics underpinning these traits using a genome-wide association (GWA) approach. We found that biomass positively correlated with the content of many free amino acids, including L-glutamine, L-tryptophan, and L-serine, but negatively correlated with specialized metabolites, such as flavonoids. GWA analysis showed that several candidate genes involved in processes such as photosynthesis, protein degradation, and organ development were jointly associated with multiple metabolic traits. The results suggest the above genes are suitable targets for simultaneous optimization of duckweed growth and metabolite levels. This study provides insights into the metabolic diversity of S. polyrhiza and its underlying genetic architecture, paving the way for industrial applications of this plant via targeted breeding or genetic engineering.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":"18-28"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-01-01Epub Date: 2024-11-13DOI: 10.1111/plb.13742
M M Strelin, S S Gavini, N C Soares, V R Chalcoff, M A Aizen, E E Zattara, G L Gleiser
{"title":"Exploring the influences of resource limitation and plant aging on pollen development in Azorella nivalis Phil. (Apiaceae), a long-lived high-Andean cushion plant.","authors":"M M Strelin, S S Gavini, N C Soares, V R Chalcoff, M A Aizen, E E Zattara, G L Gleiser","doi":"10.1111/plb.13742","DOIUrl":"10.1111/plb.13742","url":null,"abstract":"<p><p>Angiosperm pollen, the male gametophyte, plays a crucial role in facilitating fertilization by protecting and transporting male sperm cells to the female pistil. Despite their seemingly simple structure, pollen grains undergo intricate development to produce viable sperm cells capable of fertilizing the egg cell. Factors such as resource limitation and plant aging can disrupt normal pollen development and affect pollen performance. We investigated the influence of plant resources and aging on pollen developmental failure in Azorella nivalis Phil., an exceptionally long-lived high-Andean species that grows in a stressful alpine environment. Leveraging the modular nature of plants, we aimed to identify intra-individual sources of variation in pollen developmental failure. By using pollen viability and variation in viable pollen grain size as indicators of pollen developmental performance, we assessed whether proxies of plant resource availability and aging influenced these pollen traits at the inter-individual, inter-flower and intra-flower levels. Our findings revealed decreased pollen viability in putative resource-depleted flowers and in shoots that experienced higher levels of meristematic divisions from the zygote (i.e., greater cell depth). Additionally, we observed increased variability in the size of viable pollen grains in resource-depleted anthers. Our study suggests that resource availability and shoot aging are critical determinants shaping pollen development in long-lived plants at the intra-individual level. These findings contribute to our understanding of how differences in male fitness can arise in plants, with implications for their evolutionary trajectory.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":"154-162"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-01-01Epub Date: 2024-11-12DOI: 10.1111/plb.13734
A C de Souza, A S Pires, K Donohue, E A de Mattos
{"title":"Will climate change constrain the altitudinal range of threatened species? Experimental evidence from a biodiversity hotspot.","authors":"A C de Souza, A S Pires, K Donohue, E A de Mattos","doi":"10.1111/plb.13734","DOIUrl":"10.1111/plb.13734","url":null,"abstract":"<p><p>A fundamental goal in ecology and evolution is to explain the factors that shape species' abundance and range limits. Evaluating the performance of early life-stages across an altitudinal gradient can be valuable for understanding what factors shape range limits and for predicting how plant species may respond to climate change. To experimentally evaluate the presence of local adaptation in a threatened palm (Euterpe edulis) at early life-stages, we reciprocally sowed seeds at two contrasting elevations. In addition, to evaluate the effect of seed predation on E. edulis seed germination and seedling establishment, seed addition experiments were conducted at three different elevations. Our results showed no evidence of local adaptation in the early life-stages for the two E. edulis populations. We observed lower germination and seedling performance of both E. edulis populations at the low-elevation site. The exclusion of seed predation increased seedling establishment across all elevations. Seed predation and dry soil conditions were the main factors that constrained seedling establishment at the upper altitudinal limit and at the lower elevation, respectively. Climate change in the study area will result in warmer and drier environmental conditions. The lack of local adaptation and the lower performance of both E. edulis populations in warm and dry conditions, combined with a higher seed predation at the upper altitudinal limit, might cause an altitudinal range contraction, increasing the vulnerability of this threatened species to climate change.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":"172-184"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-01-01Epub Date: 2024-11-05DOI: 10.1111/plb.13738
F Hanzouli, S Daldoul, H Zemni, H Boubakri, S Vincenzi, A Mliki, M Gargouri
{"title":"Stilbene production as part of drought adaptation mechanisms in cultivated grapevine (Vitis vinifera L.) roots modulates antioxidant status.","authors":"F Hanzouli, S Daldoul, H Zemni, H Boubakri, S Vincenzi, A Mliki, M Gargouri","doi":"10.1111/plb.13738","DOIUrl":"10.1111/plb.13738","url":null,"abstract":"<p><p>Stilbenes, naturally occurring polyphenolic secondary metabolites, play a pivotal role in adaptation of various plant species to biotic and abiotic factors. Recently, increased attention has been directed toward their potential to enhance plant stress tolerance. We evaluated drought tolerance of three grapevine varieties grown with different levels of water deficit. Throughout, we studied physiological mechanisms associated with drought stress tolerance, particularly stilbene accumulation in root tissues, using HPLC. Additionally, we explored the possible relationship between antioxidant potential and stilbene accumulation in response to water deficit. The results underscore the detrimental impact of water deficit on grapevine growth, water status, and membrane stability index, while revealing varying tolerance among the studied genotypes. Notably, Syrah variety had superior drought tolerance, compared to Razegui and Muscat d'Italie grapes. Under severe water deficit, Syrah exhibited a substantial increase in levels of stilbenic compounds, such as t-resveratrol, t-piceatannol, t-ɛ-viniferin, and t-piceid, in root tissues compared to other genotypes. This increase was positively correlated with total antioxidant activity (TAA), emphasizing the active role of resveratrol and its derivatives in total antioxidant potential. This demonstratres the potential involvement of resveratrol and its derivatives in enhancing antioxidant status of the drought-tolerant Syrah grape variety. Our findings suggest that these stilbenes may function as valuable markers in grapevine breeding programs, offering novel insights for the sustainable cultivation of grapevines in water-limited environments.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":"102-115"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-01-01Epub Date: 2024-10-15DOI: 10.1111/plb.13729
N Sadeghpour, H A Asadi-Gharneh, M Nasr-Esfahani, B Rahimiardkapan, A Nasr-Esfahani, A Nasr-Esfahani, M Monazah
{"title":"Gene markers generating polygenic resistance in melon-Fusarium wilt-FOM1.2 interaction pathosystem.","authors":"N Sadeghpour, H A Asadi-Gharneh, M Nasr-Esfahani, B Rahimiardkapan, A Nasr-Esfahani, A Nasr-Esfahani, M Monazah","doi":"10.1111/plb.13729","DOIUrl":"10.1111/plb.13729","url":null,"abstract":"<p><p>Developing melon genotypes with resistance to Fusarium oxysporum f. sp. Melonis-(FOM) race1.2 is a major goal in any breeding program. In this study, we identified the role of 11 gene markers that contribute to polygenic resistance during the FOM1.2-melon interaction. qRT-PCR analysis elucidated upregulation of candidate marker genes AMT, DXPR, Fom-2, GLUC, GalS, GRF3, MLO, PRK, RuBlsCo, TLP and WRKY in resistant 'Shante-F1' and 'Khatouni', and susceptible 'Shante-T' and 'Shahabadi' at 7, 14 and 21 days post-inoculation (dpi). We also studied changes in defence-related enzyme activity: chitinase (CHI), β-1,3-glucanase (GLU) and peroxidase (POX) in melon roots. AMT, GLUC and DXPR transcripts were upregulatied in leaf and root tissues of the resistant 'Shante-F1' and 'Shahabadi'. Transcript levels for GalS and GRF3 increased 6.77- and 6.83-fold in roots of 'Shante-F1' at 7 dpi, whereas in PRK, TLP and WRKY theye increased by 7.84-, 5.15- and 12.26-fold at 14 dpi, respectively. However, transcript levels increased by 5.18-fold for Fom-2 and 8.46-fold for MLO at 21 dpi. Also, RBC transcript level peaked at 14 dpi with 4.9-fold increase in leaves of resistant genotypes, whereas AMT increased 2.94-fold at 21 dpi, and GLUC and DXPR increased 7.11- and 2.91-fold at 14 dpi in 'Shante-F', respectively. Defence-related-enzyme activity was also upregulated three-fold in resistant varieties. The dynamic shifts in the melon transcriptome induced by FOM1.2 emphasize that resistance mechanisms are predominantly regulated through signalling pathways involving CHI, GLU, and POX defence response. Surprisingly, the AMT gene, basically resistant to downy mildew, Pseudoperonospora cubensis; GLUC, MLO and PRK resistant to powdery mildew (Sphaerotheca fusca); TLP and WRKY resistant to Phytophthora blight (Phytophthora capsici); and GRF3 and RBC resistant to root knot nematodes (Meloidogyne spp.) were upregulated in resistant genotypes, indicating a dual role of these genes in resistance to more than one disease at a time.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":"52-65"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant BiologyPub Date : 2025-01-01Epub Date: 2024-11-28DOI: 10.1111/plb.13744
N Saabna, T Keasar, Y Sapir
{"title":"The roles of florivory and herbivory in maintaining intra-population flower colour variation in Anemone coronaria.","authors":"N Saabna, T Keasar, Y Sapir","doi":"10.1111/plb.13744","DOIUrl":"10.1111/plb.13744","url":null,"abstract":"<p><p>Most flowering plants are colour monomorphic, while within-population flower colour variation is rare. Multiple selection agents on flower colour, each favouring a different colour morph, may drive such uncommon polymorphisms. We tested the role of biotic antagonistic interactions in maintaining flower colour variation in Anemone coronaria (Ranunculaceae), in colour-polymorphic populations comprised of red, purple, and white flowers. We estimated the extent of leaf herbivory and petal florivory in each flower colour morph in three populations over two flowering seasons. We categorized types of damage to four groups of herbivores and estimated the plant maternal fitness. We tested pollinator response to different levels (0-30%) of simulated florivory in experimental flower arrays. Leaf and petal damage did not differ between white- and purple-flowering plants. Red-flowering plants had higher leaf damage than white-flowering plants and higher petal damage than purple-flowering plants. Nevertheless, all colour morphs had similar fitness. Red flowers exhibited more petal scratches (attributed to glaphyrid beetles), but fewer petal bites (attributed to caterpillars or grasshoppers), than white and purple flowers. Experimentally induced florivory did not reduce visits by potential pollinators in any colour morph. Glaphyrid beetles are the major pollinators of red anemone flowers, suggesting that their service to red flowers as mutualists (pollinators) should be weighed against their disservice as antagonists (florivores). A balance between pollination service and petal scratch damage of red flowers, both mediated by Glaphyird beetles, may equalize fitness between the red and the purple/white colour morphs, contributing to colour polymorphism.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":"163-171"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}