U Mukhtar, S C Newmarch, R C Winkworth, P S Soltis, D E Soltis, J A Tate
{"title":"异源多倍体杂角兔及其二倍体亲本质体基因组的比较分析。","authors":"U Mukhtar, S C Newmarch, R C Winkworth, P S Soltis, D E Soltis, J A Tate","doi":"10.1111/plb.70109","DOIUrl":null,"url":null,"abstract":"<p><p>Tragopogon is a model system for the study of recent, recurrent, and reciprocal allopolyploid formation. Recent research has focused on the fates of nuclear genes duplicated in the allopolyploid T. miscellus relative to the parental diploids, T. dubius and T. pratensis. In contrast, little attention has been given to organellar genomes, which interact with the duplicated nuclear genomes via their gene products. Here we reconstructed plastid genomes (plastomes) for representatives of these three species to investigate their structure and variability among natural and synthetic allopolyploids. Genomic libraries were Illumina-sequenced for several individuals of the allopolyploid T. miscellus and its diploid parents. Whole plastomes were assembled from skimmed data with comparative analyses used to quantify structural and nucleotide variation. Tragopogon plastomes have a typical quadripartite structure and are similar in size to those of other Asteraceae. The 12 plastomes were highly similar, sharing ~99.5%-100% identity. In all but one case, the plastome sequence for each of the polyploids was most similar to that of its expected maternal parent. The exception involved a polyploid that unexpectedly had a T. dubius plastome type, likely as the result of backcrossing with its presumed paternal parent. Such backcrossing events may have contributed to the demise of this polyploid population. Plastome sequences can be used to infer the maternal origins of polyploids as well as investigate ongoing population-level dynamics. More fully assessing plastome variation across the geographic distribution of polyploids and their diploid progenitors may provide additional insights into polyploid formation, population dynamics, and subsequent evolution.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of plastid genomes from allopolyploid Tragopogon miscellus and its diploid parents.\",\"authors\":\"U Mukhtar, S C Newmarch, R C Winkworth, P S Soltis, D E Soltis, J A Tate\",\"doi\":\"10.1111/plb.70109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tragopogon is a model system for the study of recent, recurrent, and reciprocal allopolyploid formation. Recent research has focused on the fates of nuclear genes duplicated in the allopolyploid T. miscellus relative to the parental diploids, T. dubius and T. pratensis. In contrast, little attention has been given to organellar genomes, which interact with the duplicated nuclear genomes via their gene products. Here we reconstructed plastid genomes (plastomes) for representatives of these three species to investigate their structure and variability among natural and synthetic allopolyploids. Genomic libraries were Illumina-sequenced for several individuals of the allopolyploid T. miscellus and its diploid parents. Whole plastomes were assembled from skimmed data with comparative analyses used to quantify structural and nucleotide variation. Tragopogon plastomes have a typical quadripartite structure and are similar in size to those of other Asteraceae. The 12 plastomes were highly similar, sharing ~99.5%-100% identity. In all but one case, the plastome sequence for each of the polyploids was most similar to that of its expected maternal parent. The exception involved a polyploid that unexpectedly had a T. dubius plastome type, likely as the result of backcrossing with its presumed paternal parent. Such backcrossing events may have contributed to the demise of this polyploid population. Plastome sequences can be used to infer the maternal origins of polyploids as well as investigate ongoing population-level dynamics. More fully assessing plastome variation across the geographic distribution of polyploids and their diploid progenitors may provide additional insights into polyploid formation, population dynamics, and subsequent evolution.</p>\",\"PeriodicalId\":220,\"journal\":{\"name\":\"Plant Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/plb.70109\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/plb.70109","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Comparative analysis of plastid genomes from allopolyploid Tragopogon miscellus and its diploid parents.
Tragopogon is a model system for the study of recent, recurrent, and reciprocal allopolyploid formation. Recent research has focused on the fates of nuclear genes duplicated in the allopolyploid T. miscellus relative to the parental diploids, T. dubius and T. pratensis. In contrast, little attention has been given to organellar genomes, which interact with the duplicated nuclear genomes via their gene products. Here we reconstructed plastid genomes (plastomes) for representatives of these three species to investigate their structure and variability among natural and synthetic allopolyploids. Genomic libraries were Illumina-sequenced for several individuals of the allopolyploid T. miscellus and its diploid parents. Whole plastomes were assembled from skimmed data with comparative analyses used to quantify structural and nucleotide variation. Tragopogon plastomes have a typical quadripartite structure and are similar in size to those of other Asteraceae. The 12 plastomes were highly similar, sharing ~99.5%-100% identity. In all but one case, the plastome sequence for each of the polyploids was most similar to that of its expected maternal parent. The exception involved a polyploid that unexpectedly had a T. dubius plastome type, likely as the result of backcrossing with its presumed paternal parent. Such backcrossing events may have contributed to the demise of this polyploid population. Plastome sequences can be used to infer the maternal origins of polyploids as well as investigate ongoing population-level dynamics. More fully assessing plastome variation across the geographic distribution of polyploids and their diploid progenitors may provide additional insights into polyploid formation, population dynamics, and subsequent evolution.
期刊介绍:
Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology.
Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.