Benjamin Sterling Succop, Andreas Seas, Joshua Woo, Kevin Jesus Bode Padron, Alyssa M Bartlett, Bhavya Shah, Shruti Agashe, Stephen Harward Ii
{"title":"Focused Ultrasound in the Treatment of Epilepsy: Current Applications and Future Directions.","authors":"Benjamin Sterling Succop, Andreas Seas, Joshua Woo, Kevin Jesus Bode Padron, Alyssa M Bartlett, Bhavya Shah, Shruti Agashe, Stephen Harward Ii","doi":"10.1159/000545716","DOIUrl":"10.1159/000545716","url":null,"abstract":"<p><strong>Introduction: </strong>Epilepsy is the fourth most common neurological disorder, affecting nearly 1% of the global population. Despite recent advancements in medical therapies, approximately one-third of patients remain refractory to treatment, necessitating consideration of surgical intervention. Historically, epilepsy surgery has been invasive and maximalist in nature, involving extensive brain resections with significant risk for morbidity. However, emerging approaches offer promising, less-invasive alternatives. One such technique is focused ultrasound (FUS), a rapidly evolving, incisionless, image-guided therapy that allows physicians to precisely target specific brain regions with ultrasonic energy to achieve a range of therapeutic effects.</p><p><strong>Methods: </strong>Systematic methods were implemented to define the scope of preclinical and clinical applications of FUS to treat epilepsy. Inclusion criteria included preclinical experiment, case study, case series, cohort studies, and clinical trials involving therapeutic application of FUS for treatment of epilepsy of any etiology. The primary exclusion criterion was FUS for indications other than treatment of epilepsy.</p><p><strong>Results: </strong>Forty-six published articles and 9 ongoing clinical trials were included for a total of 55 studies. For ablative therapies, 10 studies were identified, of which 2 were preclinical studies, 1 was a clinical proof-of-concept study, 3 were clinical case reports, 1 was a completed clinical pilot study, and 3 were ongoing Phase I-Phase II clinical trials. For neuromodulatory FUS, 30 studies were identified, of which 19 were preclinical studies, 1 was a clinical case report, 4 were clinical pilot studies, and 6 were ongoing Phase I-Phase II clinical trials. Lastly, with respect to FUS-mediated blood-brain barrier (BBB) opening studies, 15 were identified, all of which were preclinical studies.</p><p><strong>Discussion: </strong>Currently, FUS has been clinically applied for targeted brain ablation (high intensity [HIFU]) and neuromodulation (low intensity [LIFU]), with recent basic science applications of sonogenetics and targeted drug delivery through the BBB (Precise Intracerebral Noninvasive Guided, or PING, Surgery) offering new opportunities for clinical translation. This review summarizes preclinical and clinical applications of FUS for epilepsy treatment, addresses challenges to implementation, and explores key areas for future research.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"166-188"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144018321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ajmal Zemmar, David H Aguirre-Padilla, Irene E Harmsen, Julianne Baarbé, Can Sarica, Kazuaki Yamamoto, Talyta Grippe, Ghazaleh Darmani, Amitabh Bhattacharya, Zhongcan Chen, Kelly E Gartner, Nelleke van Wouwe, Paula Azevedo, Artur Vetkas, Darcia Paul, Nardin Samuel, Gianluca Sorrento, Brendan Santyr, Nathan Rowland, Suneil Kalia, Robert Chen, Alfonso Fasano, Andres M Lozano
{"title":"Dorsal Column Spinal Cord Stimulation Attenuates Brain-Spine Connectivity through Locomotion- and Visuospatial-Specific Area Activation in Progressive Freezing of Gait.","authors":"Ajmal Zemmar, David H Aguirre-Padilla, Irene E Harmsen, Julianne Baarbé, Can Sarica, Kazuaki Yamamoto, Talyta Grippe, Ghazaleh Darmani, Amitabh Bhattacharya, Zhongcan Chen, Kelly E Gartner, Nelleke van Wouwe, Paula Azevedo, Artur Vetkas, Darcia Paul, Nardin Samuel, Gianluca Sorrento, Brendan Santyr, Nathan Rowland, Suneil Kalia, Robert Chen, Alfonso Fasano, Andres M Lozano","doi":"10.1159/000541986","DOIUrl":"10.1159/000541986","url":null,"abstract":"<p><strong>Introduction: </strong>Freezing of gait (FOG) is a clinical phenomenon with major life impairments and significant reduction in quality of life for affected patients. FOG is a feature of Parkinson's disease and a hallmark of primary progressive FOG, currently reclassified as Progressive Supranuclear Palsy-progressive gait freezing (PSP-PGF). The pathophysiology of FOG and particularly PGF, which is a rare degenerative disorder with a progressive natural history of gait decline, is poorly understood. Mechanistically, changes in oscillatory activity and synchronization in frontal cortical regions, the basal ganglia, and the midbrain locomotor region have been reported, indicating that dysrhythmic oscillations and coherence could play a causal role in the pathophysiology of FOG. Deep brain stimulation and spinal cord stimulation (SCS) have been tested as therapeutic neuromodulation avenues for FOG with mixed outcomes.</p><p><strong>Methods: </strong>We analyzed gait and balance in 3 patients with PSP-PGF who received percutaneous thoracic SCS and utilized magnetoencephalography (MEG), electroencephalography, and electromyography to evaluate functional connectivity between the brain and spine.</p><p><strong>Results: </strong>Gait and balance did not worsen over a 13-month period. This observation was accompanied by decreased beta-band spectral power in the whole brain and particularly in the basal ganglia. This was accompanied by increased functional connectivity in and between the sensorimotor cortices, basal ganglia, temporal cortex, and cerebellum, and a surge in corticomuscular coherence when SCS was paired with visual cues.</p><p><strong>Conclusion: </strong>Our results suggest synergistic activity between brain and spinal circuits upon SCS for FOG in PGF, which may have implications for future brain-spine interfaces and closed-loop neuromodulation for patients with FOG.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"90-101"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric Bayman, Chiagoziem Anigbogu, Ashkaun Razmara, Steven G Ojemann, John A Thompson, Daniel R Kramer
{"title":"Comparison of Deep Brain Stimulation and Responsive Neurostimulation Wound Complication Rates and Risk Factors: A Single-Center Retrospective Study.","authors":"Eric Bayman, Chiagoziem Anigbogu, Ashkaun Razmara, Steven G Ojemann, John A Thompson, Daniel R Kramer","doi":"10.1159/000545146","DOIUrl":"10.1159/000545146","url":null,"abstract":"<p><strong>Introduction: </strong>Deep brain stimulation (DBS) and responsive neural stimulation (RNS) are effective for patients with pharmacoresistant epilepsy. Similar outcomes and increasingly convergent indications mean the choice of device may come down to other factors. Common to implanted therapeutic devices, wound-associated adverse outcomes are among the more common complications for these two procedures. However, there have been limited studies evaluating the differences in wound complication rates between DBS and RNS, despite the procedural differences for implantation for the two devices. Our objective was to analyze the differences in wound complication rates between patients who received DBS and RNS devices at the University of Colorado Hospital between 2016 and 2023.</p><p><strong>Methods: </strong>All DBS and RNS surgeries performed from 2016 to 2023 for two surgeons at the University of Colorado Hospital were retrospectively reviewed. Wound complications included infection, hardware protrusion, or wound erosion requiring surgical washout, explant, or replacement. Risk factors evaluated included age, sex, diabetes, body mass index, and immunocompromised status. Incidence of complications and risk factors were evaluated and compared using a chi-squared and Mann-Whitney U test. The relationship between selected risk factors and the probability of wound complication was evaluated using a binomial logistic regression.</p><p><strong>Results: </strong>A total of 297 patients underwent DBS (n = 234, n = 218 for movement disorders, n = 16 for epilepsy) and RNS (n = 63) implantation. The DBS group had higher median age at the time of surgery compared to the RNS group (65 vs. 37, p < 0.001), and no other significant differences in group characteristics were noted. Wound complication incidence was greater in the RNS group compared to DBS (12.7% vs. 4.3%, p < 0.001). No other risk factors were noted to contribute to wound complication rate.</p><p><strong>Conclusion: </strong>Wound complication incidence was greater in RNS patients compared to DBS patients. Differences in age, sex, body mass index, and immunocompromised status were not associated with increased wound complication risk.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"147-153"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143796539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Henry M Skelton, Nealen G Laxpati, Jason J Lamanna, Faical Isbaine, Daniel L Barrow, Robert E Gross
{"title":"Pseudoaneurysm Formation after Stereoencephalography for Epilepsy.","authors":"Henry M Skelton, Nealen G Laxpati, Jason J Lamanna, Faical Isbaine, Daniel L Barrow, Robert E Gross","doi":"10.1159/000543531","DOIUrl":"10.1159/000543531","url":null,"abstract":"<p><strong>Introduction: </strong>Stereoencephalography (SEEG) has emerged as the most common technique for invasive monitoring as part of the preoperative workup for epilepsy surgery. The use of intracranial implants has the potential for vascular injury giving rise to pseudoaneurysm, followed by unpredictable, delayed hemorrhage. Confirmed cases of post-SEEG pseudoaneurysm, as well as suspected cases involving delayed hemorrhage after explanation, are very rare and have not allowed identification of the inciting cause.</p><p><strong>Case presentation: </strong>A patient was evaluated over the course of two SEEG implantations before the decision to proceed with deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) to treat their drug-resistant epilepsy. Preoperative imaging for DBS revealed a pseudoaneurysm proximal to an SEEG craniostomy site. The lesion was treated with excision and vascular bypass, and the patient ultimately underwent DBS as planned. Retrospective analysis strongly implicated the SEEG implantation in pseudoaneurysmal formation, most likely via arterial collision resulting from entry site deviation from the planned stereotactic trajectory.</p><p><strong>Conclusion: </strong>Pseudoaneurysm may be a more prevalent complication of SEEG than existing literature would suggest, as the delayed formation of these lesions can allow them to escape recognition on routine postoperative imaging. Though likely still uncommon, this may suggest the prudence of additional radiological surveillance. This complication is potentially devastating if unrecognized and untreated, but otherwise does not preclude further surgical therapies for epilepsy.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"212-218"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anton Fomenko, Artur Vetkas, Benjamin Davidson, Newton Cho, Suneil K Kalia
{"title":"Stereotactic Frame-Based Targeting of the Posterior Fossa: A Systematic Workflow for the Leksell G Frame.","authors":"Anton Fomenko, Artur Vetkas, Benjamin Davidson, Newton Cho, Suneil K Kalia","doi":"10.1159/000543013","DOIUrl":"10.1159/000543013","url":null,"abstract":"<p><strong>Introduction: </strong>Cerebellar deep brain stimulation (DBS) is gaining traction as a potential treatment for movement disorders and stroke, and there is renewed interest in the cerebellum as a target for neuromodulation. Despite the safety and accuracy of frame-based approaches to the posterior fossa, unconventional stereotactic frame placement may be necessary to allow for low posterior fossa trajectories. Current literature lacks a comprehensive protocol detailing inverted frame placement and targeting.</p><p><strong>Methods: </strong>Preoperative imaging was acquired prone. An inverted Leksell G frame was applied along with an open-topped CT fiducial box, followed by a prone CT with the scanner set to the \"legs first, nose up\" configuration. Target coordinates were extracted from navigation software after image fusion. Intraoperatively, the patient was positioned prone, and the stereotactic arc was mounted in the lateral-right orientation, with inverted arc supports. Confirmatory stereotaxy to a scalp staple was performed, and the DBS leads were then inserted.</p><p><strong>Conclusion: </strong>Our standardized protocol provides a flexible platform for posterior fossa DBS, allowing for low trajectories and multiple electrodes. Unlike conventional upright frame placement, an inverted frame permits an unobstructed view of suboccipital entry sites and incision placement. A conventional frame and regular planning software are sufficient, with no additional mathematical calculations required.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"126-131"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142829857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Youngkyung Jung, Karim Mithani, Hrishikesh Suresh, Nebras Warsi, Irene E Harmsen, Sara Breitbart, Carolina Gorodetsky, Alfonso Fasano, Aria Fallah, Aristides Hadjinicolaou, Alexander Weil, George M Ibrahim
{"title":"Deep Brain Stimulation in Pediatric Populations: A Scoping Review of the Clinical Trial Landscape.","authors":"Youngkyung Jung, Karim Mithani, Hrishikesh Suresh, Nebras Warsi, Irene E Harmsen, Sara Breitbart, Carolina Gorodetsky, Alfonso Fasano, Aria Fallah, Aristides Hadjinicolaou, Alexander Weil, George M Ibrahim","doi":"10.1159/000543289","DOIUrl":"10.1159/000543289","url":null,"abstract":"<p><strong>Introduction: </strong>There has been rapid advancement in the development of deep brain stimulation (DBS) as a treatment option for adults for neurological and neuropsychiatric conditions. Here, we present a scoping review of completed and ongoing clinical trials focused on DBS in pediatric populations, highlighting key knowledge gaps.</p><p><strong>Methods: </strong>Three databases (PubMed, OVID, and Embase) and the <ext-link ext-link-type=\"uri\" xlink:href=\"http://clinicaltrials.gov\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">clinicaltrials.gov</ext-link> registry were queried to identify clinical trials for DBS in pediatric cohorts (age ≤18 years). Prospective and retrospective case series were excluded. No restrictions were placed on the diagnoses or measured clinical outcomes. Individual patient demographics, diagnosis, DBS target, and primary endpoints were extracted and summarized.</p><p><strong>Results: </strong>A total of 13 clinical trials were included in the final review, consisting of 9 completed trials (357 screened) and 4 ongoing trials (82 screened). Of the completed trials, 6 studied dystonia (both inherited and acquired; participants aged 4-18 years) and 3 studied drug-resistant epilepsy (participants aged 4-17 years). Among the 6 trials for dystonia, 5 used the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) as the primary endpoint. There were a total of 18 adverse events documented across 63 participants, with 5 of 9 studies reporting adverse events. Ongoing clinical trials are evaluating DBS for dystonia (N = 2), epilepsy (N = 1), and self-injurious behavior (N = 1).</p><p><strong>Conclusions: </strong>This scoping review summarizes the landscape of clinical trials for DBS in children and youth. In dystonia, further research is warranted with more relevant pediatric outcome measures and for understudied patient subgroups and targets. There are also significant gaps in our understanding of evaluating the role of DBS in other neurological and neurodevelopmental disorders in pediatric populations.</p><p><strong>Introduction: </strong>There has been rapid advancement in the development of deep brain stimulation (DBS) as a treatment option for adults for neurological and neuropsychiatric conditions. Here, we present a scoping review of completed and ongoing clinical trials focused on DBS in pediatric populations, highlighting key knowledge gaps.</p><p><strong>Methods: </strong>Three databases (PubMed, OVID, and Embase) and the <ext-link ext-link-type=\"uri\" xlink:href=\"http://clinicaltrials.gov\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">clinicaltrials.gov</ext-link> registry were queried to identify clinical trials for DBS in pediatric cohorts (age ≤18 years). Prospective and retrospective case series were excluded. No restrictions were placed on the diagnoses or measured clinical outcomes. Individual patient demographics, diagnosis, DBS target, and primary endpoints were extracted and summarized.</p><p><strong>Result","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"132-144"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian G Lopez Ramos, Maryam N Shahin, Beck Shafie, Hao Tan, Erin Yamamoto, Alexander P Rockhill, Adeline Fecker, Mostafa Ismail, Daniel R Cleary, Ahmed Raslan, Lia D Ernst
{"title":"Combination Resective or Ablative Epilepsy Surgery with Neurostimulation for Complex Epilepsy Networks: A Case Series.","authors":"Christian G Lopez Ramos, Maryam N Shahin, Beck Shafie, Hao Tan, Erin Yamamoto, Alexander P Rockhill, Adeline Fecker, Mostafa Ismail, Daniel R Cleary, Ahmed Raslan, Lia D Ernst","doi":"10.1159/000541350","DOIUrl":"10.1159/000541350","url":null,"abstract":"<p><strong>Introduction: </strong>Complex epilepsy networks with multifocal onset zones that overlap with eloquent cortex may benefit from combined surgical approaches. However, limited data exist on outcomes associated with performing these therapies in tandem. In this case series, we report on 6 patients who underwent combination surgery with either resection or laser interstitial thermal therapy (LITT) and neuromodulation with responsive neurostimulation (RNS) or deep brain stimulation (DBS).</p><p><strong>Methods: </strong>We performed a retrospective review of adult patients with medically refractory epilepsy who underwent staged combination epilepsy surgeries during the same admission at our institution. Six cases treated between 2019 and 2023 were identified. All patients underwent a presurgical work-up including invasive intracranial monitoring and underwent a combined approach with either surgical resection, LITT, RNS, or DBS. We extracted data on demographic, clinical, and surgical characteristics. The primary outcome was change in seizure frequency from baseline.</p><p><strong>Results: </strong>The mean age was 42.7 years old (4 female). All patients had at least one epileptogenic zone in the temporal lobe, two in extratemporal neocortex, two in periventricular nodular heterotopia. For the staged combination approach, 3 patients underwent LITT followed by RNS, two underwent resection and RNS, and one received LITT and DBS. The mean reduction in seizure frequency per month at last follow-up was 90%. Postoperatively, 1 patient experienced superior visual field deficits related to LITT, and another had postoperative deep vein thrombosis.</p><p><strong>Conclusion: </strong>All patients experienced at least an 83% reduction in seizures. This case series demonstrates the potential benefits of a combined surgical approach in patients with multifocal seizures and at least one lesion that can be safely resected or ablated. Future prospective studies are warranted.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"14-23"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ludvic Zrinzo, Harith Akram, Jonathan Hyam, Joseph Candelario-Mckeown, Ranjit Rangnekar, Ashley Nwanze, San San Xu, Thomas Foltynie, Patricia Limousin, Marie T Krüger
{"title":"Disruption Driving Innovation: Optimising Efficiency in Functional Neurosurgery.","authors":"Ludvic Zrinzo, Harith Akram, Jonathan Hyam, Joseph Candelario-Mckeown, Ranjit Rangnekar, Ashley Nwanze, San San Xu, Thomas Foltynie, Patricia Limousin, Marie T Krüger","doi":"10.1159/000542110","DOIUrl":"10.1159/000542110","url":null,"abstract":"<p><strong>Introduction: </strong>Rising NHS waiting lists are a major problem following the COVID-19 pandemic. In our institution, surgical waiting time for elective functional neurosurgical procedures, such as deep brain stimulation (DBS) and radiofrequency ablation (RFA), reached >1.5 years by the end of 2022. During 2023, reduced operating room availability, intraoperative MRI (iMRI) suite closure for refurbishment, and ongoing strikes threatened to increase waiting times further.</p><p><strong>Methods: </strong>Our previous surgical workflow for DBS and RFA procedures was examined. Several aspects were identified, and changes implemented to increase efficiency. Procedure numbers, waiting times, lead placement accuracy, and complication rates before and after these changes were compared.</p><p><strong>Results: </strong>Prior to 2023, an average of 0.8 new procedures were performed per surgical list. Introduction of a new workflow in 2023 allowed an average of 1.6 new procedures per surgical list (100% increase in productivity). In 2023, 95 DBS and 31 RFA procedures were performed on 79 surgical lists. This represents a 52% increase over \"pre-pandemic\" activity in 2019 (74 DBS, 9 RFA) on 102 available surgical lists. Mean (SD) targeting accuracy (0.8 [0.4] mm) was comparable to previous years (0.9[0.3] mm). In 2023, there were no infections requiring hardware removal and only one asymptomatic haemorrhage following an RFA procedure. The surgical waiting time was reduced from >1.5 years to <4 months by the end of 2023.</p><p><strong>Conclusion: </strong>Changes in surgical workflow, with neurosurgeons working in parallel, maximise surgical efficiency and productivity, significantly increasing the number of DBS and RFA procedures without compromising accuracy and safety.</p><p><strong>Introduction: </strong>Rising NHS waiting lists are a major problem following the COVID-19 pandemic. In our institution, surgical waiting time for elective functional neurosurgical procedures, such as deep brain stimulation (DBS) and radiofrequency ablation (RFA), reached >1.5 years by the end of 2022. During 2023, reduced operating room availability, intraoperative MRI (iMRI) suite closure for refurbishment, and ongoing strikes threatened to increase waiting times further.</p><p><strong>Methods: </strong>Our previous surgical workflow for DBS and RFA procedures was examined. Several aspects were identified, and changes implemented to increase efficiency. Procedure numbers, waiting times, lead placement accuracy, and complication rates before and after these changes were compared.</p><p><strong>Results: </strong>Prior to 2023, an average of 0.8 new procedures were performed per surgical list. Introduction of a new workflow in 2023 allowed an average of 1.6 new procedures per surgical list (100% increase in productivity). In 2023, 95 DBS and 31 RFA procedures were performed on 79 surgical lists. This represents a 52% increase over \"pre-pandemic\" activity in 2019 (74 ","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"81-89"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Volker Arnd Coenen, Jana Maxi Zielinski, Bastian Elmar Alexander Sajonz, Peter Christoph Reinacher, Annette Thierauf-Emberger, Johanna Wessolleck, Maximilian Frosch, Björn Spittau, Thomas Eduard Schläpfer, Juan Carlos Baldermann, Dominique Endres, Wolf Lagrèze, Máté Daniel Döbrössy, Marco Reisert
{"title":"Joint Anatomical, Histological, and Imaging Investigation of the Midbrain Target Region for Superolateral Medial Forebrain Bundle Deep Brain Stimulation.","authors":"Volker Arnd Coenen, Jana Maxi Zielinski, Bastian Elmar Alexander Sajonz, Peter Christoph Reinacher, Annette Thierauf-Emberger, Johanna Wessolleck, Maximilian Frosch, Björn Spittau, Thomas Eduard Schläpfer, Juan Carlos Baldermann, Dominique Endres, Wolf Lagrèze, Máté Daniel Döbrössy, Marco Reisert","doi":"10.1159/000541834","DOIUrl":"10.1159/000541834","url":null,"abstract":"<p><strong>Introduction: </strong>Deep brain stimulation (DBS) of the superolateral branch of the medial forebrain bundle (slMFB) is currently being researched in clinical trials and open case series as a therapeutic option for treatment-resistant major depressive disorder and treatment-resistant obsessive-compulsive disorder (TR-OCD). There are numerous publications describing stimulation in such proximity to the ventral tegmental area (VTA) and open questions remain concerning the stimulation target and its functional environment. As of right now, we are not aware of any publications that compare the typical electrode placements with the histologically supported tractographic depiction of the target structure.</p><p><strong>Methods: </strong>We used three cadaver midbrain samples with presumed unaltered anatomy. After fixation, staining and slicing, the histological samples were warped to the Montreal Neurological Institute (MNI) big brain environment. Utilizing a tractographic atlas, a qualitative analysis of the typical slMFB stimulation site in the lateral VTA utilizing a subset of clinically implanted DBS electrodes in n = 12 patients, successfully implanted for TR-OCD was performed.</p><p><strong>Results: </strong>A joint qualitative overlay analysis of predominantly tyrosine hydroxylase stained histology at different resolutions in an anatomical common space was achieved. Localization of the DBS lead bodies was found in the typical positions in front of the red nuclei in the lateral VTA. DBS lead tip region positions explained the oculomotor side effects of stimulation related to paranigral or parabrachial pigmented sub-nuclei of the VTA, respectively. The location of active electrode contacts suggests downstream and antidromic effects on the greater VTA related medial forebrain bundle system.</p><p><strong>Conclusion: </strong>This is the first dedicated joint histopathological overlay analysis of DBS electrodes targeting the slMFB and lateral VTA in a common anatomical space. This analysis might serve to better understand the DBS target region for this procedure.</p><p><strong>Introduction: </strong>Deep brain stimulation (DBS) of the superolateral branch of the medial forebrain bundle (slMFB) is currently being researched in clinical trials and open case series as a therapeutic option for treatment-resistant major depressive disorder and treatment-resistant obsessive-compulsive disorder (TR-OCD). There are numerous publications describing stimulation in such proximity to the ventral tegmental area (VTA) and open questions remain concerning the stimulation target and its functional environment. As of right now, we are not aware of any publications that compare the typical electrode placements with the histologically supported tractographic depiction of the target structure.</p><p><strong>Methods: </strong>We used three cadaver midbrain samples with presumed unaltered anatomy. After fixation, staining and slicing, the histological sample","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"1-13"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yash Akkara, Jolene Marie Singh, Lewis Thorne, Ciaran Scott Hill
{"title":"Stereotactic Radiosurgery versus Neuroablative Techniques for Medically Refractory Trigeminal Neuralgia: A Systematic Review and Meta-Analysis of Outcomes.","authors":"Yash Akkara, Jolene Marie Singh, Lewis Thorne, Ciaran Scott Hill","doi":"10.1159/000543859","DOIUrl":"10.1159/000543859","url":null,"abstract":"<p><strong>Introduction: </strong>There is a lack of evidence to guide the choice between stereotactic radiosurgery (SRS) and neuroablative procedures for patients with medically refractory trigeminal neuralgia (TN). This meta-analysis aims to identify the outcomes of these interventions for TN.</p><p><strong>Methods: </strong>Studies identified through PubMed, MEDLINE, and Embase, were cohort studies or clinical trials, had ≥20 participants, and had a ≥12-month follow-up. All participants were ≥16 years old and had primary refractory TN. Studies reported outcomes using the Barrow Neurological Institute (BNI) scale. The Shapiro-Wilk test, Mann-Whitney U test, two-tailed T Test, Spearman's R, and ANCOVA were used to test statistical significance. Screening was done according to PRISMA guidelines. Bias assessment was according to the Newcastle-Ottawa Scale.</p><p><strong>Results: </strong>3,288 patients from 37 studies were included (2,537 SRS, 751 neuroablative). Overall reporting of BNI I, II, III, IV, and V was 36.0%, 17.4%, 23.9%, 11.7%, and 10.9%, respectively, in the SRS cohort, and 63.6%, 10.4%, 11.1%, 7.3%, and 7.6%, respectively, in the neuroablative cohort (p < 0.0001). Recurrence was 41.6% in the SRS cohort and 22.5% in the neuroablative cohort (p < 0.001). The neuroablative cohort reported significantly higher rates of hypoesthesia (18.6% vs. 50.5%, p < 0.0001), and minor (19.6% vs. 2.2%, p < 0.0001) and major (3.4% vs. 1.3%, p < 0.001) adverse effects compared to SRS.</p><p><strong>Conclusion: </strong>The findings suggest improved pain relief and reduced recurrence with neuroablative procedures compared to SRS, albeit conferring a higher rate of adverse effects. Neuroablative techniques may be more appropriate for patients with medically refractory TN who are unsuitable for microvascular decompression.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"154-165"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}