Henry M Skelton, Nealen G Laxpati, Jason J Lamanna, Faical Isbaine, Daniel L Barrow, Robert E Gross
{"title":"Pseudoaneurysm Formation after Stereoencephalography for Epilepsy.","authors":"Henry M Skelton, Nealen G Laxpati, Jason J Lamanna, Faical Isbaine, Daniel L Barrow, Robert E Gross","doi":"10.1159/000543531","DOIUrl":null,"url":null,"abstract":"<p><p>Introduction Stereoencephalography (SEEG) has emerged as the most common technique for invasive monitoring as part of the pre-operative workup for epilepsy surgery. The use of intracranial implants has the potential for vascular injury giving rise to pseudoaneurysm, followed by unpredictable, delayed hemorrhage. However, while this has been suspected in cases of severe, delayed hemorrhage after SEEG implantation, no case of confirmed pseudoaneurysm has been shown to arise secondary to a SEEG implant. Case Presentation A patient was evaluated over the course of two SEEG implantations before the decision to proceed with deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) to treat their drug-resistant epilepsy. Pre-operative imaging for DBS revealed a pseudoaneurysm proximal to an SEEG craniostomy site. The lesion was treated with excision and vascular bypass, and the patient ultimately underwent DBS as planned. Retrospective analysis strongly implicated the SEEG implantation in pseudoaneurysmal formation, most likely via arterial collision resulting from entry site deviation from the planned stereotactic trajectory. Conclusion Pseudoaneurysm may be a more prevalent complication of SEEG than existing literature would suggest, as the delayed formation of these lesions can allow them to escape recognition on routine postoperative imaging. Though likely still uncommon, this may suggest the prudence of additional radiological surveillance. This complication is potentially devastating if unrecognized and untreated, but otherwise does not preclude further surgical therapies for epilepsy.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"1-14"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stereotactic and Functional Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000543531","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction Stereoencephalography (SEEG) has emerged as the most common technique for invasive monitoring as part of the pre-operative workup for epilepsy surgery. The use of intracranial implants has the potential for vascular injury giving rise to pseudoaneurysm, followed by unpredictable, delayed hemorrhage. However, while this has been suspected in cases of severe, delayed hemorrhage after SEEG implantation, no case of confirmed pseudoaneurysm has been shown to arise secondary to a SEEG implant. Case Presentation A patient was evaluated over the course of two SEEG implantations before the decision to proceed with deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) to treat their drug-resistant epilepsy. Pre-operative imaging for DBS revealed a pseudoaneurysm proximal to an SEEG craniostomy site. The lesion was treated with excision and vascular bypass, and the patient ultimately underwent DBS as planned. Retrospective analysis strongly implicated the SEEG implantation in pseudoaneurysmal formation, most likely via arterial collision resulting from entry site deviation from the planned stereotactic trajectory. Conclusion Pseudoaneurysm may be a more prevalent complication of SEEG than existing literature would suggest, as the delayed formation of these lesions can allow them to escape recognition on routine postoperative imaging. Though likely still uncommon, this may suggest the prudence of additional radiological surveillance. This complication is potentially devastating if unrecognized and untreated, but otherwise does not preclude further surgical therapies for epilepsy.
期刊介绍:
''Stereotactic and Functional Neurosurgery'' provides a single source for the reader to keep abreast of developments in the most rapidly advancing subspecialty within neurosurgery. Technological advances in computer-assisted surgery, robotics, imaging and neurophysiology are being applied to clinical problems with ever-increasing rapidity in stereotaxis more than any other field, providing opportunities for new approaches to surgical and radiotherapeutic management of diseases of the brain, spinal cord, and spine. Issues feature advances in the use of deep-brain stimulation, imaging-guided techniques in stereotactic biopsy and craniotomy, stereotactic radiosurgery, and stereotactically implanted and guided radiotherapeutics and biologicals in the treatment of functional and movement disorders, brain tumors, and other diseases of the brain. Background information from basic science laboratories related to such clinical advances provides the reader with an overall perspective of this field. Proceedings and abstracts from many of the key international meetings furnish an overview of this specialty available nowhere else. ''Stereotactic and Functional Neurosurgery'' meets the information needs of both investigators and clinicians in this rapidly advancing field.