{"title":"Investigations of sharp bounds for causal effects under selection bias.","authors":"Stina Zetterstrom, Arvid Sjölander, Ingeborg Waernbaum","doi":"10.1177/09622802251374168","DOIUrl":"https://doi.org/10.1177/09622802251374168","url":null,"abstract":"<p><p>Selection bias is a common type of bias, and depending on the causal estimand of interest and the structure of the selection variable, it can be a threat to both external and internal validity. One way to quantify the maximum magnitude of potential selection bias is to calculate bounds for the causal estimand. Here, we consider previously proposed bounds for selection bias, which require the specification of certain sensitivity parameters. First, we show that the sensitivity parameters are variation independent. Second, we show that the bounds are sharp under certain conditions. Furthermore, we derive improved bounds that are based on the same sensitivity parameters. Depending on the causal estimand, these bounds require additional information regarding the selection probabilities. We illustrate the improved bounds in an empirical example where the effect of breakfast eating on overweight is estimated. Lastly, the performance of the bounds are investigated in a numerical experiment for sharp and non-sharp cases.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251374168"},"PeriodicalIF":1.9,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145201306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pei-Hsuan Hsia, An-Shun Tai, Shih-Chen Fu, Sheng-Hsuan Lin
{"title":"On identification and estimation for sufficient cause interaction through a quasi-instrumental variable.","authors":"Pei-Hsuan Hsia, An-Shun Tai, Shih-Chen Fu, Sheng-Hsuan Lin","doi":"10.1177/09622802251376236","DOIUrl":"https://doi.org/10.1177/09622802251376236","url":null,"abstract":"<p><p>Mechanistic interaction concerns how exposures affect the outcome. When investigating mechanisms, synergism is the most mentioned type in the fields of genetic study and pharmacology. Synergism is defined under the framework of sufficient component cause model, which is difficult to be quantified directly. Sufficient cause interaction (SCI) is the only alternative metric to imply the existence of synergism. VanderWeele and Robins provided empirical tests for SCIs. However, this test only assesses the lower bound of SCIs rather than estimate SCIs directly due to the lack of the degree of freedom, which causes low power. To address this issue, in this study, we propose a novel method to estimate the probability of individual with SCI by introducing a new factor named quasi-instrumental variable, which is necessary for the background condition of SCI. We also develop a corresponding hypothesis test and show that it is more powerful than the existing empirical test. We demonstrate this method by applying it to estimate the synergistic effects between intestinal bacteria on the formation of Parkinson's disease.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251376236"},"PeriodicalIF":1.9,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145201347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harlan Campbell, Nicholas Latimer, Jeroen P Jansen, Shannon Cope
{"title":"Augmented two-stage estimation for treatment switching in oncology trials: Leveraging external data for improved precision.","authors":"Harlan Campbell, Nicholas Latimer, Jeroen P Jansen, Shannon Cope","doi":"10.1177/09622802251374838","DOIUrl":"https://doi.org/10.1177/09622802251374838","url":null,"abstract":"<p><p>Randomized controlled trials in oncology often allow control group participants to switch to experimental treatments, a practice that, while often ethically necessary, complicates the accurate estimation of long-term treatment effects. When switching rates are high or sample sizes are limited, commonly used methods for treatment switching adjustment (such as the rank-preserving structural failure time model, inverse probability of censoring weights, and two-stage estimation) may produce imprecise estimates. Real-world data can be used to develop an external control arm for the randomized controlled trial, although this approach ignores evidence from trial subjects who did not switch and ignores evidence from the data obtained prior to switching for those subjects who did. This article introduces \"augmented two-stage estimation\" (ATSE), a method that combines data from non-switching participants in a randomized controlled trial with an external dataset, forming a \"hybrid non-switching arm\". While aiming for more precise estimation, the augmented two-stage estimation requires strong assumptions. Namely, conditional on all the observed covariates: (1) a participant's decision to switch treatments must be independent of their post-progression survival, and (2) individuals from the randomized controlled trial and the external cohort must be exchangeable. With a simulation study, we evaluate the augmented two-stage estimation method's performance compared to two-stage estimation adjustment and an external control arm approach. Results indicate that performance is dependent on scenario characteristics, but when unconfounded external data are available, augmented two-stage estimation may result in less bias and improved precision compared to two-stage estimation and external control arm approaches. When external data are affected by unmeasured confounding, augmented two-stage estimation becomes prone to bias, but to a lesser extent compared to an external control arm approach.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251374838"},"PeriodicalIF":1.9,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145201281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bayesian clustering prior with overlapping indices for effective use of multisource external data.","authors":"Xuetao Lu, J Jack Lee","doi":"10.1177/09622802251367439","DOIUrl":"https://doi.org/10.1177/09622802251367439","url":null,"abstract":"<p><p>The use of external data in clinical trials offers numerous advantages, such as reducing enrollment, increasing study power, and shortening trial duration. In Bayesian inference, information in external data can be transferred into an informative prior for future borrowing (i.e. prior synthesis). However, multisource external data often exhibits heterogeneity, which can cause information distortion during the prior synthesizing. Clustering helps identifying the heterogeneity, enhancing the congruence between synthesized prior and external data. Obtaining optimal clustering is challenging due to the trade-off between congruence with external data and robustness to future data. We introduce two overlapping indices: the overlapping clustering index and the overlapping evidence index . Using these indices alongside a K-means algorithm, the optimal clustering result can be identified by balancing this trade-off and applied to construct a prior synthesis framework to effectively borrow information from multisource external data. By incorporating the (robust) meta-analytic predictive (MAP) prior within this framework, we develop (robust) Bayesian clustering MAP priors. Simulation studies and real-data analysis demonstrate their advantages over commonly used priors in the presence of heterogeneity. Since the Bayesian clustering priors are constructed without needing the data from prospective study, they can be applied to both study design and data analysis in clinical trials.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251367439"},"PeriodicalIF":1.9,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145070347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A robust Bayesian dose optimization design with backfill and randomization for phase I/II clinical trials.","authors":"Yingjie Qiu, Mingyue Li","doi":"10.1177/09622802251374290","DOIUrl":"https://doi.org/10.1177/09622802251374290","url":null,"abstract":"<p><p>The integration of backfill cohorts into Phase I clinical trials has garnered increasing interest within the clinical community, particularly following the \"Project Optimus\" initiative by the U.S. Food and Drug Administration, as detailed in their final guidance of August 2024. This approach allows for the collection of additional clinical data to assess safety and activity before initiating trials that compare multiple dosages. For novel cancer treatments such as targeted therapies, immunotherapies, antibody-drug conjugates, and chimeric antigen receptor T-cell therapies, the efficacy of a drug may not necessarily increase with dose levels. Backfill strategies are especially beneficial as they enable the continuation of patient enrollment at lower doses while higher doses are being explored. We propose a robust Bayesian design framework that borrows information across dose levels without imposing stringent parametric assumptions on dose-response curves. This framework minimizes the risk of administering subtherapeutic doses by jointly evaluating toxicity and efficacy, and by effectively addressing the challenge of delayed outcomes. Simulation studies demonstrate that our design not only generates additional data for late stage studies but also enhances the accuracy of optimal dose selection, improves patient safety, reduces the number of patients receiving subtherapeutic doses, and shortens trial duration across various realistic trial settings.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251374290"},"PeriodicalIF":1.9,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145001479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruben Deneer, Zhuozhao Zhan, Edwin Van den Heuvel, Astrid Gm van Boxtel, Arjen-Kars Boer, Natal Aw van Riel, Volkher Scharnhorst
{"title":"A comparison of semi-parametric statistical modeling approaches to dynamic classification of irregularly and sparsely sampled curves.","authors":"Ruben Deneer, Zhuozhao Zhan, Edwin Van den Heuvel, Astrid Gm van Boxtel, Arjen-Kars Boer, Natal Aw van Riel, Volkher Scharnhorst","doi":"10.1177/09622802251374288","DOIUrl":"https://doi.org/10.1177/09622802251374288","url":null,"abstract":"<p><p>This study describes and compares the performance of several semi-parametric statistical modeling approaches to dynamically classify subjects into two groups, based on an irregularly and sparsely sampled curve. The motivating example of this study is the diagnosis of a complication following cardiac surgery, based on repeated measures of a single cardiac biomarker where early detection enables prompt intervention by clinicians. We first simulate data to compare the dynamic predictive performance over time for growth charts, conditional growth charts, a varying-coefficient model, a generalized functional linear model and longitudinal discriminant analysis. Our results demonstrate that functional regression approaches that implicitly incorporate historic information through random effects, provide superior discriminative ability compared to approaches that do not take historic information into account or explicitly model historic information through autoregressive terms. Semi-parametric modeling approaches show a benefit in terms of dynamic discriminative ability compared to the clinical practice of using a fixed threshold on the raw measured value. Under high degrees of sparsity the functional regression approaches are less advantageous compared to varying-coefficient models or quantile regression. The class imbalance of the outcome affects the historic and non-historic approaches in equal measure, with lower event rates reducing performance. Finally, the functional regression and varying-coefficient model were applied to a real-world clinical dataset to demonstrate their performance and application.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251374288"},"PeriodicalIF":1.9,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144993506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Covariate-adjusted response-adaptive designs for semiparametric survival models.","authors":"Ayon Mukherjee, Sayantee Jana, Stephen Coad","doi":"10.1177/09622802241287704","DOIUrl":"10.1177/09622802241287704","url":null,"abstract":"<p><p>Covariate-adjusted response adaptive (CARA) designs are effective in increasing the expected number of patients receiving superior treatment in an ongoing clinical trial, given a patient's covariate profile. There has recently been extensive research on CARA designs with parametric distributional assumptions on patient responses. However, the range of applications for such designs becomes limited in real clinical trials. Sverdlov et al. have pointed out that irrespective of a specific parametric form of the survival outcomes, their proposed CARA designs based on the exponential model provide valid statistical inference, provided the final analysis is performed using the appropriate accelerated failure time (AFT) model. In real survival trials, however, the planned primary analysis is rarely conducted using an AFT model. The proposed CARA designs are developed obviating any distributional assumptions about the survival responses, relying only on the proportional hazards assumption between the two treatment arms. To meet the multiple experimental objectives of a clinical trial, the proposed designs are developed based on an optimal allocation approach. The covariate-adjusted doubly adaptive biased coin design and the covariate-adjusted efficient-randomized adaptive design are used to randomize the patients to achieve the derived targets on expectation. These expected targets are functions of the Cox regression coefficients that are estimated sequentially with the arrival of every new patient into the trial. The merits of the proposed designs are assessed using extensive simulation studies of their operating characteristics and then have been implemented to re-design a real-life confirmatory clinical trial.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1697-1723"},"PeriodicalIF":1.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angela Carollo, Hein Putter, Paul Hc Eilers, Jutta Gampe
{"title":"Competing risks models with two time scales.","authors":"Angela Carollo, Hein Putter, Paul Hc Eilers, Jutta Gampe","doi":"10.1177/09622802251367443","DOIUrl":"https://doi.org/10.1177/09622802251367443","url":null,"abstract":"<p><p>Competing risks models can involve more than one time scale. A relevant example is the study of mortality after a cancer diagnosis, where time since diagnosis but also age may jointly determine the hazards of death due to different causes. Multiple time scales have rarely been explored in the context of competing events. Here, we propose a model in which the cause-specific hazards vary smoothly over two times scales. It is estimated by two-dimensional <math><mi>P</mi></math>-splines, exploiting the equivalence between hazard smoothing and Poisson regression. The data are arranged on a grid so that we can make use of generalised linear array models for efficient computations. The R-package TwoTimeScales implements the model. As a motivating example we analyse mortality after diagnosis of breast cancer and we distinguish between death due to breast cancer and all other causes of death. The time scales are age and time since diagnosis. We use data from the Surveillance, Epidemiology and End Results (SEER) program. In the SEER data, age at diagnosis is provided with a last open-ended category, leading to coarsely grouped data. We use the two-dimensional penalised composite link model to ungroup the data before applying the competing risks model with two time scales.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251367443"},"PeriodicalIF":1.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144969832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximation to the optimal allocation for response adaptive designs.","authors":"Yanqing Yi, Xikui Wang","doi":"10.1177/09622802241293750","DOIUrl":"10.1177/09622802241293750","url":null,"abstract":"<p><p>We investigate the optimal allocation design for response adaptive clinical trials, under the average reward criterion. The treatment randomization process is formatted as a Markov decision process and the Bayesian method is used to summarize the information on treatment effects. A span-contraction operator is introduced and the average reward generated by the policy identified by the operator is shown to converge to the optimal value. We propose an algorithm to approximate the optimal treatment allocation using the Thompson sampling and the contraction operator. For the scenario of two treatments with binary responses and a sample size of 200 patients, simulation results demonstrate efficient learning features of the proposed method. It allocates a high proportion of patients to the better treatment while retaining a good statistical power and having a small probability for a trial going in the undesired direction. When the difference in success probability to detect is 0.2, the probability for a trial going in the unfavorable direction is < 1.5%, which decreases further to < 0.9% when the difference to detect is 0.3. For normally distribution responses, with a sample size of 100 patients, the proposed method assigns 13% more patients to the better treatment than the traditional complete randomization in detecting an effect size of difference 0.8, with a good statistical power and a < 0.7% probability for the trial to go in the undesired direction.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1724-1731"},"PeriodicalIF":1.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Covariate selection for optimizing balance with an innovative adaptive randomization approach.","authors":"Ziqing Guo, Yang Liu, Lucy Xia","doi":"10.1177/09622802241313283","DOIUrl":"10.1177/09622802241313283","url":null,"abstract":"<p><p>Balancing influential covariates is crucial for valid treatment comparisons in clinical studies. While covariate-adaptive randomization is commonly used to achieve balance, its performance can be inadequate when the number of baseline covariates is large. It is, therefore, essential to identify the influential factors associated with the outcome and ensure balance among these critical covariates. In this article, we propose a novel adaptive randomization approach that integrates the patients' responses and covariates information to select sequentially significant covariates and maintain their balance. We establish theoretically the consistency of our covariate selection method and demonstrate that the improved covariate balancing, as evidenced by a faster convergence rate of the imbalance measure, leads to higher efficiency in estimating treatment effects. Furthermore, we provide extensive numerical and empirical studies to illustrate the benefits of our proposed method across various settings.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1751-1779"},"PeriodicalIF":1.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144035504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}