Design of egocentric network-based studies to estimate causal effects under interference.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Junhan Fang, Donna Spiegelman, Ashley L Buchanan, Laura Forastiere
{"title":"Design of egocentric network-based studies to estimate causal effects under interference.","authors":"Junhan Fang, Donna Spiegelman, Ashley L Buchanan, Laura Forastiere","doi":"10.1177/09622802251357021","DOIUrl":null,"url":null,"abstract":"<p><p>Many public health interventions are conducted in settings where individuals are connected and the intervention assigned to some individuals may spill over to other individuals. In these settings, we can assess: (a) the individual effect on the treated, (b) the spillover effect on untreated individuals through an indirect exposure to the intervention, and (c) the overall effect on the whole population. Here, we consider an egocentric network-based randomized design in which a set of index participants is recruited and randomly assigned to treatment, while data are also collected on their untreated network members. Such a design is common in peer education interventions conceived to leverage behavioral influence among peers. Using the potential outcomes framework, we first clarify the assumptions required to rely on an identification strategy that is commonly used in the well-studied two-stage randomized design. Under these assumptions, causal effects can be jointly estimated using a regression model with a block-diagonal structure. We then develop sample size formulas for detecting individual, spillover, and overall effects for single and joint hypothesis tests, and investigate the role of different parameters. Finally, we illustrate the use of our sample size formulas for an egocentric network-based randomized experiment to evaluate a peer education intervention for HIV prevention.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251357021"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251357021","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Many public health interventions are conducted in settings where individuals are connected and the intervention assigned to some individuals may spill over to other individuals. In these settings, we can assess: (a) the individual effect on the treated, (b) the spillover effect on untreated individuals through an indirect exposure to the intervention, and (c) the overall effect on the whole population. Here, we consider an egocentric network-based randomized design in which a set of index participants is recruited and randomly assigned to treatment, while data are also collected on their untreated network members. Such a design is common in peer education interventions conceived to leverage behavioral influence among peers. Using the potential outcomes framework, we first clarify the assumptions required to rely on an identification strategy that is commonly used in the well-studied two-stage randomized design. Under these assumptions, causal effects can be jointly estimated using a regression model with a block-diagonal structure. We then develop sample size formulas for detecting individual, spillover, and overall effects for single and joint hypothesis tests, and investigate the role of different parameters. Finally, we illustrate the use of our sample size formulas for an egocentric network-based randomized experiment to evaluate a peer education intervention for HIV prevention.

设计以自我为中心的网络为基础的研究,以估计干扰下的因果效应。
许多公共卫生干预措施是在个人相互联系的环境中进行的,分配给某些人的干预措施可能会溢出到其他个人。在这些情况下,我们可以评估:(a)个体对接受干预者的影响,(b)通过间接接触干预对未接受治疗者的溢出效应,以及(c)对整个人群的总体影响。在这里,我们考虑了一个基于自我中心网络的随机设计,其中招募了一组索引参与者并随机分配到治疗组,同时也收集了未经治疗的网络成员的数据。这种设计在同伴教育干预中很常见,旨在利用同伴之间的行为影响。使用潜在结果框架,我们首先澄清了依赖于在充分研究的两阶段随机设计中常用的识别策略所需的假设。在这些假设下,可以使用块对角结构的回归模型联合估计因果效应。然后,我们开发了样本大小公式,用于检测单个和联合假设检验的个体、溢出和整体效应,并研究了不同参数的作用。最后,我们举例说明了在一个基于自我中心网络的随机实验中使用我们的样本量公式来评估同伴教育干预对艾滋病预防的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信