健康效用调整生存率:临床试验设计的复合终点。

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Yangqing Deng, John de Almeida, Wei Xu
{"title":"健康效用调整生存率:临床试验设计的复合终点。","authors":"Yangqing Deng, John de Almeida, Wei Xu","doi":"10.1177/09622802251338409","DOIUrl":null,"url":null,"abstract":"<p><p>Many randomized trials have used overall survival as the primary endpoint for establishing non-inferiority of one treatment compared to another. However, if a treatment is non-inferior to another treatment in terms of overall survival, clinicians may be interested in further exploring which treatment results in better health utility scores for patients. Examining health utility in a secondary analysis is feasible, however, since health utility is not the primary endpoint, it is usually not considered in the sample size calculation, hence the power to detect a difference of health utility is not guaranteed. Furthermore, often the premise of non-inferiority trials is to test the assumption that an intervention provides superior quality of life or toxicity profile without compromising survival when compared to the existing standard. Based on this consideration, it may be beneficial to consider both survival and utility when designing a trial. There have been methods that can combine survival and quality of life into a single measure, but they either have strong restrictions or lack theoretical frameworks. In this manuscript, we propose a method called health utility adjusted survival, which can combine survival outcome and longitudinal utility measures for treatment comparison. We propose an innovative statistical framework as well as procedures to conduct power analysis and sample size calculation. By comprehensive simulation studies involving summary statistics from the PET-NECK trial, we demonstrate that our new approach can achieve superior power performance using relatively small sample sizes, and our composite endpoint can be considered as an alternative to overall survival in future clinical trial design and analysis where both survival and health utility are of interest.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251338409"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Health utility adjusted survival: A composite endpoint for clinical trial designs.\",\"authors\":\"Yangqing Deng, John de Almeida, Wei Xu\",\"doi\":\"10.1177/09622802251338409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many randomized trials have used overall survival as the primary endpoint for establishing non-inferiority of one treatment compared to another. However, if a treatment is non-inferior to another treatment in terms of overall survival, clinicians may be interested in further exploring which treatment results in better health utility scores for patients. Examining health utility in a secondary analysis is feasible, however, since health utility is not the primary endpoint, it is usually not considered in the sample size calculation, hence the power to detect a difference of health utility is not guaranteed. Furthermore, often the premise of non-inferiority trials is to test the assumption that an intervention provides superior quality of life or toxicity profile without compromising survival when compared to the existing standard. Based on this consideration, it may be beneficial to consider both survival and utility when designing a trial. There have been methods that can combine survival and quality of life into a single measure, but they either have strong restrictions or lack theoretical frameworks. In this manuscript, we propose a method called health utility adjusted survival, which can combine survival outcome and longitudinal utility measures for treatment comparison. We propose an innovative statistical framework as well as procedures to conduct power analysis and sample size calculation. By comprehensive simulation studies involving summary statistics from the PET-NECK trial, we demonstrate that our new approach can achieve superior power performance using relatively small sample sizes, and our composite endpoint can be considered as an alternative to overall survival in future clinical trial design and analysis where both survival and health utility are of interest.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"9622802251338409\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802251338409\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251338409","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

许多随机试验使用总生存期作为确定一种治疗相对于另一种治疗的非劣效性的主要终点。然而,如果一种治疗方法在总体生存方面不逊色于另一种治疗方法,临床医生可能会有兴趣进一步探索哪种治疗方法能给患者带来更好的健康效用评分。在二次分析中检查健康效用是可行的,但是,由于健康效用不是主要终点,因此通常不会在样本量计算中考虑它,因此不能保证检测健康效用差异的能力。此外,与现有标准相比,非劣效性试验的前提通常是测试干预措施提供更高的生活质量或毒性特征而不影响生存的假设。基于这种考虑,在设计试验时同时考虑生存和效用可能是有益的。有一些方法可以将生存和生活质量结合成一个单一的衡量标准,但它们要么有很强的限制,要么缺乏理论框架。在本文中,我们提出了一种称为健康效用调整生存的方法,它可以将生存结果和纵向效用措施结合起来进行治疗比较。我们提出了一个创新的统计框架以及进行功率分析和样本量计算的程序。通过包括PET-NECK试验汇总统计数据的综合模拟研究,我们证明了我们的新方法可以在相对较小的样本量下实现优越的功率性能,并且我们的复合终点可以被视为未来临床试验设计和分析中总生存率的替代方案,其中生存和健康效用都是感兴趣的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Health utility adjusted survival: A composite endpoint for clinical trial designs.

Many randomized trials have used overall survival as the primary endpoint for establishing non-inferiority of one treatment compared to another. However, if a treatment is non-inferior to another treatment in terms of overall survival, clinicians may be interested in further exploring which treatment results in better health utility scores for patients. Examining health utility in a secondary analysis is feasible, however, since health utility is not the primary endpoint, it is usually not considered in the sample size calculation, hence the power to detect a difference of health utility is not guaranteed. Furthermore, often the premise of non-inferiority trials is to test the assumption that an intervention provides superior quality of life or toxicity profile without compromising survival when compared to the existing standard. Based on this consideration, it may be beneficial to consider both survival and utility when designing a trial. There have been methods that can combine survival and quality of life into a single measure, but they either have strong restrictions or lack theoretical frameworks. In this manuscript, we propose a method called health utility adjusted survival, which can combine survival outcome and longitudinal utility measures for treatment comparison. We propose an innovative statistical framework as well as procedures to conduct power analysis and sample size calculation. By comprehensive simulation studies involving summary statistics from the PET-NECK trial, we demonstrate that our new approach can achieve superior power performance using relatively small sample sizes, and our composite endpoint can be considered as an alternative to overall survival in future clinical trial design and analysis where both survival and health utility are of interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信