Model-based approach for two-stage group sequential or adaptive designs in bioequivalence studies using parallel and crossover designs.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Florence Loingeville, Manel Rakez, Thu Thuy Nguyen, Mark Donnelly, Lanyan Fang, Kevin Feng, Liang Zhao, Stella Grosser, Guoying Sun, Wanjie Sun, France Mentré, Julie Bertrand
{"title":"Model-based approach for two-stage group sequential or adaptive designs in bioequivalence studies using parallel and crossover designs.","authors":"Florence Loingeville, Manel Rakez, Thu Thuy Nguyen, Mark Donnelly, Lanyan Fang, Kevin Feng, Liang Zhao, Stella Grosser, Guoying Sun, Wanjie Sun, France Mentré, Julie Bertrand","doi":"10.1177/09622802251354925","DOIUrl":null,"url":null,"abstract":"<p><p>In pharmacokinetic (PK) bioequivalence (BE) analysis, the recommended approach is the two one-sided tests (TOSTs) on non-compartmental analysis (NCA) estimates of area under the plasma drug concentration versus time curve and <math><msub><mi>C</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math> (NCA-TOST). Sample size estimation for a BE study requires assumptions on between/within subject variability (B/WSV). When little prior information is available, interim analysis using two-stage group sequential (GS) or adaptive designs (ADs) may be beneficial. GS fixes the second stage size, while AD requires sample re-estimation based on first-stage results. Recent research has proposed model-based (MB) TOST, using nonlinear mixed effects models, as an alternative to NCA-TOST. This work extends GS and AD approaches to MB-TOST. We evaluated these approaches on simulated parallel and two-way crossover designs for a one-compartment PK model, considering three variability levels for initial sample size calculation. We compared final sample size, type I error, and power estimates from one-stage, GS, and AD designs using NCA-TOST and MB-TOST. Results showed both NCA-TOST and MB-TOST reasonably controlled type I error while maintaining adequate power in two-stage GS and AD approaches, based on our limited computation power. Two-stage designs reduced sample size compared to traditional designs, especially for highly variable drugs, with many trials stopping at Stage 1 in AD designs. Our findings suggest MB-TOST may serve as a viable alternative to NCA-TOST for BE assessment in two-stage designs, especially when B/WSV impacts BE results.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251354925"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251354925","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

In pharmacokinetic (PK) bioequivalence (BE) analysis, the recommended approach is the two one-sided tests (TOSTs) on non-compartmental analysis (NCA) estimates of area under the plasma drug concentration versus time curve and Cmax (NCA-TOST). Sample size estimation for a BE study requires assumptions on between/within subject variability (B/WSV). When little prior information is available, interim analysis using two-stage group sequential (GS) or adaptive designs (ADs) may be beneficial. GS fixes the second stage size, while AD requires sample re-estimation based on first-stage results. Recent research has proposed model-based (MB) TOST, using nonlinear mixed effects models, as an alternative to NCA-TOST. This work extends GS and AD approaches to MB-TOST. We evaluated these approaches on simulated parallel and two-way crossover designs for a one-compartment PK model, considering three variability levels for initial sample size calculation. We compared final sample size, type I error, and power estimates from one-stage, GS, and AD designs using NCA-TOST and MB-TOST. Results showed both NCA-TOST and MB-TOST reasonably controlled type I error while maintaining adequate power in two-stage GS and AD approaches, based on our limited computation power. Two-stage designs reduced sample size compared to traditional designs, especially for highly variable drugs, with many trials stopping at Stage 1 in AD designs. Our findings suggest MB-TOST may serve as a viable alternative to NCA-TOST for BE assessment in two-stage designs, especially when B/WSV impacts BE results.

采用平行和交叉设计的生物等效性研究中两阶段组序贯或自适应设计的基于模型的方法。
在药代动力学(PK)生物等效性(BE)分析中,推荐的方法是对血浆药物浓度与时间曲线下面积和Cmax (NCA- tost)的非室室分析(NCA- tost)估计进行两个单侧试验(TOSTs)。BE研究的样本量估计需要假设受试者之间/受试者内部的可变性(B/WSV)。当先验信息很少时,使用两阶段组序列(GS)或自适应设计(ADs)进行中期分析可能是有益的。GS确定了第二阶段的规模,而AD需要在第一阶段结果的基础上重新估计样本。最近的研究提出了基于模型的(MB) TOST,使用非线性混合效应模型,作为NCA-TOST的替代方案。这项工作将GS和AD方法扩展到MB-TOST。我们在单室PK模型的模拟平行和双向交叉设计中评估了这些方法,考虑了初始样本量计算的三个可变性水平。我们使用NCA-TOST和MB-TOST比较了单级、GS和AD设计的最终样本量、I型误差和功率估计。结果表明,基于有限的计算能力,NCA-TOST和MB-TOST在两阶段GS和AD方法中都能合理地控制I型误差,同时保持足够的功率。与传统设计相比,两阶段设计减少了样本量,特别是对于高度可变的药物,许多试验在AD设计的第一阶段就停止了。我们的研究结果表明,MB-TOST可以作为NCA-TOST的可行替代方案,用于两阶段设计的BE评估,特别是当B/WSV影响BE结果时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信