Tan Dai Nguyen, Wai Hon Chooi, Hyungkook Jeon, Jiahui Chen, Jerome Tan, Daniel N Roxby, Cheryl Yi-Pin Lee, Shi-Yan Ng, Sing Yian Chew, Jongyoon Han
{"title":"Label-Free and High-Throughput Removal of Residual Undifferentiated Cells From iPSC-Derived Spinal Cord Progenitor Cells.","authors":"Tan Dai Nguyen, Wai Hon Chooi, Hyungkook Jeon, Jiahui Chen, Jerome Tan, Daniel N Roxby, Cheryl Yi-Pin Lee, Shi-Yan Ng, Sing Yian Chew, Jongyoon Han","doi":"10.1093/stcltm/szae002","DOIUrl":"10.1093/stcltm/szae002","url":null,"abstract":"<p><p>The transplantation of spinal cord progenitor cells (SCPCs) derived from human-induced pluripotent stem cells (iPSCs) has beneficial effects in treating spinal cord injury (SCI). However, the presence of residual undifferentiated iPSCs among their differentiated progeny poses a high risk as these cells can develop teratomas or other types of tumors post-transplantation. Despite the need to remove these residual undifferentiated iPSCs, no specific surface markers can identify them for subsequent removal. By profiling the size of SCPCs after a 10-day differentiation process, we found that the large-sized group contains significantly more cells expressing pluripotent markers. In this study, we used a sized-based, label-free separation using an inertial microfluidic-based device to remove tumor-risk cells. The device can reduce the number of undifferentiated cells from an SCPC population with high throughput (ie, >3 million cells/minute) without affecting cell viability and functions. The sorted cells were verified with immunofluorescence staining, flow cytometry analysis, and colony culture assay. We demonstrated the capabilities of our technology to reduce the percentage of OCT4-positive cells. Our technology has great potential for the \"downstream processing\" of cell manufacturing workflow, ensuring better quality and safety of transplanted cells.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"387-398"},"PeriodicalIF":6.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139699248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seung Hyun Kim, Ki-Wook Oh, Min-Young Noh, Min-Soo Kwon
{"title":"Optimal Therapeutic Strategy of Bone Marrow-Originated Autologous Mesenchymal Stromal/Stem Cells for ALS.","authors":"Seung Hyun Kim, Ki-Wook Oh, Min-Young Noh, Min-Soo Kwon","doi":"10.1093/stcltm/szad095","DOIUrl":"10.1093/stcltm/szad095","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is characterized by selective and progressive neurodegenerative changes in motor neural networks. Given the system complexity, including anatomically distributed sites of degeneration from the motor cortex to the spinal cord and chronic pro-inflammatory conditions, a cell-based therapeutic strategy could be an alternative approach to treating ALS. Lessons from previous mesenchymal stromal/stem cell (MSC) trials in ALS realized the importance of 3 aspects in current and future MSC therapy, including the preparation of MSCs, administration routes and methods, and recipient-related factors. This review briefly describes the current status and future prerequisites for an optimal strategy using bone-marrow-originated MSCs to treat ALS. We suggest mandatory factors in the optimized therapeutic strategy focused on advanced therapy medicinal products produced according to Good Manufacturing Practice, an optimal administration method, the selection of proper patients, and the importance of biomarkers.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"309-316"},"PeriodicalIF":6.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asghar Fallah, Alexander Beke, Connor Oborn, Carrie-Lynn Soltys, Peter Kannu
{"title":"Direct Reprogramming of Fibroblasts to Osteoblasts: Techniques and Methodologies.","authors":"Asghar Fallah, Alexander Beke, Connor Oborn, Carrie-Lynn Soltys, Peter Kannu","doi":"10.1093/stcltm/szad093","DOIUrl":"10.1093/stcltm/szad093","url":null,"abstract":"<p><p>Direct reprogramming (DR) is an emerging technique that can be applied to convert fibroblasts into osteoblast-like cells, promoting bone formation and regeneration. We review the current methodology of DR in relation to the creation of induced osteoblasts, including a comparison of transcription factor-mediated reprogramming and nontranscription factor-mediated reprogramming. We review the selection of reprogramming factors and delivery systems required. Transcription factor cocktails, such as the RXOL cocktail (Runx2, Osx, OCT3/4, and L-MYC), have shown promise in inducing osteogenic differentiation in fibroblasts. Alterations to the original cocktail, such as the addition of Oct9 and N-myc, have resulted in improved reprogramming efficiency. Transcription factor delivery includes integrative and nonintegrative systems which encompass viral vectors and nonviral methods such as synthetic RNA. Recently, an integrative approach using self-replicating RNA has been developed to achieve a longer and more sustained transcription factor expression. Nontranscription factor-mediated reprogramming using small molecules, proteins, inhibitors, and agonists has also been explored. For example, IGFBP7 protein supplementation and ALK5i-II inhibitor treatment have shown potential in enhancing osteoblast reprogramming. Direct reprogramming methods hold great promise for advancing bone regeneration and tissue repair, providing a potential therapeutic approach for fracture healing and the repair of bone defects. Multiple obstacles and constraints need to be addressed before a clinically significant level of cell therapy will be reached. Further research is needed to optimize the efficiency of the reprogramming cocktails, delivery methods, and safety profile of the reprogramming process.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"362-370"},"PeriodicalIF":6.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139074987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Histone Trimethylations and HDAC5 Regulate Spheroid Subpopulation and Differentiation Signaling of Human Adipose-Derived Stem Cells.","authors":"Ming-Min Chang, Yi-Kai Hong, Chao-Kai Hsu, Hans I-Chen Harn, Bu-Miin Huang, Ya-Hsin Liu, Fu-I Lu, Yuan-Yu Hsueh, Shau-Ping Lin, Chia-Ching Wu","doi":"10.1093/stcltm/szad090","DOIUrl":"10.1093/stcltm/szad090","url":null,"abstract":"<p><p>Human adipose-derived stem cells (ASCs) have shown immense potential for regenerative medicine. Our previous work demonstrated that chitosan nano-deposited surfaces induce spheroid formation and differentiation of ASCs for treating sciatic nerve injuries. However, the underlying cell fate and differentiation mechanisms of ASC-derived spheroids remain unknown. Here, we investigate the epigenetic regulation and signaling coordination of these therapeutic spheroids. During spheroid formation, we observed significant increases in histone 3 trimethylation at lysine 4 (H3K4me3), lysine 9 (H3K9me3), and lysine 27 (H3K27me3), accompanied by increased histone deacetylase (HDAC) activities and decreased histone acetyltransferase activities. Additionally, HDAC5 translocated from the cytoplasm to the nucleus, along with increased nuclear HDAC5 activities. Utilizing single-cell RNA sequencing (scRNA-seq), we analyzed the chitosan-induced ASC spheroids and discovered distinct cluster subpopulations, cell fate trajectories, differentiation traits, and signaling networks using the 10x Genomics platform, R studio/language, and the Ingenuity Pathway Analysis (IPA) tool. Specific subpopulations were identified within the spheroids that corresponded to a transient reprogramming state (Cluster 6) and the endpoint cell state (Cluster 3). H3K4me3 and H3K9me3 were discovered as key epigenetic regulators by IPA to initiate stem cell differentiation in Cluster 6 cells, and confirmed by qPCR and their respective histone methyltransferase inhibitors: SNDX-5613 (a KMT2A inhibitor for H3K4me3) and SUVi (an SUV39H1 inhibitor for H3K9me3). Moreover, H3K9me3 and HDAC5 were involved in regulating downstream signaling and neuronal markers during differentiation in Cluster 3 cells. These findings emphasize the critical role of epigenetic regulation, particularly H3K4me3, H3K9me3, and HDAC5, in shaping stem cell fate and directing lineage-specific differentiation.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"293-308"},"PeriodicalIF":6.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139088659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isaak Decoene, Gabriele Nasello, Rodrigo Furtado Madeiro de Costa, Gabriella Nilsson Hall, Angela Pastore, Inge Van Hoven, Samuel Ribeiro Viseu, Catherine Verfaillie, Liesbet Geris, Frank P Luyten, Ioannis Papantoniou
{"title":"Robotics-Driven Manufacturing of Cartilaginous Microtissues for Skeletal Tissue Engineering Applications.","authors":"Isaak Decoene, Gabriele Nasello, Rodrigo Furtado Madeiro de Costa, Gabriella Nilsson Hall, Angela Pastore, Inge Van Hoven, Samuel Ribeiro Viseu, Catherine Verfaillie, Liesbet Geris, Frank P Luyten, Ioannis Papantoniou","doi":"10.1093/stcltm/szad091","DOIUrl":"10.1093/stcltm/szad091","url":null,"abstract":"<p><p>Automated technologies are attractive for enhancing the robust manufacturing of tissue-engineered products for clinical translation. In this work, we present an automation strategy using a robotics platform for media changes, and imaging of cartilaginous microtissues cultured in static microwell platforms. We use an automated image analysis pipeline to extract microtissue displacements and morphological features as noninvasive quality attributes. As a result, empty microwells were identified with a 96% accuracy, and dice coefficient of 0.84 for segmentation. Design of experiment are used for the optimization of liquid handling parameters to minimize empty microwells during long-term differentiation protocols. We found no significant effect of aspiration or dispension speeds at and beyond manual speed. Instead, repeated media changes and time in culture were the driving force or microtissue displacements. As the ovine model is the preclinical model of choice for large skeletal defects, we used ovine periosteum-derived cells to form cartilage-intermediate microtissues. Increased expression of COL2A1 confirms chondrogenic differentiation and RUNX2 shows no osteogenic specification. Histological analysis shows an increased secretion of cartilaginous extracellular matrix and glycosaminoglycans in larger microtissues. Furthermore, microtissue-based implants are capable of forming mineralized tissues and bone after 4 weeks of ectopic implantation in nude mice. We demonstrate the development of an integrated bioprocess for culturing and manipulation of cartilaginous microtissues and anticipate the progressive substitution of manual operations with automated solutions for the manufacturing of microtissue-based living implants.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"278-292"},"PeriodicalIF":6.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jose Matas, Cynthia García, Daniela Poblete, Rolando Vernal, Alexander Ortloff, Noymar Luque-Campos, Yessia Hidalgo, Jimena Cuenca, Catalina Infante, Maria Ignacia Cadiz, Maroun Khoury, Patricia Luz-Crawford, Francisco Espinoza
{"title":"A Phase I Dose-Escalation Clinical Trial to Assess the Safety and Efficacy of Umbilical Cord-Derived Mesenchymal Stromal Cells in Knee Osteoarthritis.","authors":"Jose Matas, Cynthia García, Daniela Poblete, Rolando Vernal, Alexander Ortloff, Noymar Luque-Campos, Yessia Hidalgo, Jimena Cuenca, Catalina Infante, Maria Ignacia Cadiz, Maroun Khoury, Patricia Luz-Crawford, Francisco Espinoza","doi":"10.1093/stcltm/szad088","DOIUrl":"10.1093/stcltm/szad088","url":null,"abstract":"<p><p>Osteoarthritis (OA) is the most common degenerative joint disease. Mesenchymal stromal cells (MSC) are promising cell-based therapy for OA. However, there is still a need for additional randomized, dose-dependent studies to determine the optimal dose and tissue source of MSC for improved clinical outcomes. Here, we performed a dose-dependant evaluation of umbilical cord (UC)-derived MSC (Celllistem) in a murine model and in knee OA patients. For the preclinical study, a classical dose (200.000 cells) and a lower dose (50.000 cells) of Cellistem were intra-articularly injected into the mice knee joints. The results showed a dose efficacy response effect of Cellistem associated with a decreased inflammatory and degenerative response according to the Pritzker OARSI score. Following the same approach, the dose-escalation phase I clinical trial design included 3 sequential cohorts: low-dose group (2 × 106 cells), medium-dose group (20 × 106), and high-dose group (80 × 106). All the doses were safe, and no serious adverse events were reported. Nonetheless, 100% of the patients injected with the high-dose experienced injection-related swelling in the knee joint. According to WOMAC total outcomes, patients treated with all doses reported significant improvements in pain and function compared with baseline after 3 and 6 months. However, the improvements were higher in patients treated with both medium and low dose as compared to high dose. Therefore, our data demonstrate that the intra-articular injection of different doses of Cellistem is both safe and efficient, making it an interesting therapeutic alternative to treat mild and symptomatic knee OA patients. Trial registration ClinicalTrials.gov NCT03810521.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"193-203"},"PeriodicalIF":6.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139747408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Material-Based Strategies for Diabetic Bone Regeneration.","authors":"Zheng Li, Muxin Yue, Yongsheng Zhou","doi":"10.1093/stcltm/szad092","DOIUrl":"10.1093/stcltm/szad092","url":null,"abstract":"<p><p>Increased bone fragility and poor bone healing are common and serious complications of diabetes, especially in elderly patients. Long-term hyperglycemia often leads to serious infection and nonunion. Diabetes brings changes to bone microenvironment, including imbalanced immunity, disorder of macrophage polarization, deterioration of microvascular system, excessive advanced glycation end products, reactive oxygen species (ROS), local high levels of glucose, and great tendency to infection. The main traditional managements of diabetic bone involve oral medication and systematic drug administration, which exhibit limited therapeutic efficacy and accompanied side effects. Materials-based strategies have recently been potential alternatives for the treatment of diabetic bone diseases. In this review, we highlight the main material-based strategies for diabetic bone repair deficiency, including regulation of macrophages, elimination of excessive ROS, and resistance to bacterial infection. We also describe the future therapeutic designing approaches for smart biomaterials for diabetic bone regeneration, which would provide new ideas to protect bone health in patients with diabetes.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"243-254"},"PeriodicalIF":6.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138886029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Establishment and Validation of a Model for Fetal Neural Ischemia Using Necrotic Core-Free Human Spinal Cord Organoids.","authors":"Aeri Shin, Jae Ryun Ryu, Byung Gon Kim, Woong Sun","doi":"10.1093/stcltm/szad089","DOIUrl":"10.1093/stcltm/szad089","url":null,"abstract":"<p><p>Fetal spinal cord ischemia is a serious medical condition that can result in significant neurological damage and adverse outcomes for the fetus. However, the lack of an appropriate experimental model has hindered the understanding of the pathology and the development of effective treatments. In our study, we established a system for screening drugs that affect fetal spinal cord ischemia using spinal cord organoids. Importantly, we produced necrotic core-free human spinal cord organoids (nf-hSCOs) by reducing the organoid size to avoid potential complications of spontaneous necrosis in large organoids. Exposing nf-hSCOs to CoCl2 as a hypoxia mimetic and hypoglycemic conditions resulted in significant neuronal damage, as assessed by multiple assay batteries. By utilizing this model, we tested chemicals that have been reported to exhibit beneficial effects in brain organoid-based ischemia models. Surprisingly, these chemicals did not provide sufficient benefit, and we discovered that rapamycin is a mild neuroprotective reagent for both axon degeneration and neuronal survival. We propose that nf-hSCO is suitable for large-scale screening of fetal neural ischemia due to its scalability, ease of ischemic induction, implementation of quantifiable assay batteries, and the absence of spontaneous necrosis.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"268-277"},"PeriodicalIF":6.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138810072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juliana Redondo, Steven Bailey, Kevin C Kemp, Neil J Scolding, Claire M Rice
{"title":"The Bone Marrow Microenvironment in Immune-Mediated Inflammatory Diseases: Implications for Mesenchymal Stromal Cell-Based Therapies.","authors":"Juliana Redondo, Steven Bailey, Kevin C Kemp, Neil J Scolding, Claire M Rice","doi":"10.1093/stcltm/szad086","DOIUrl":"10.1093/stcltm/szad086","url":null,"abstract":"<p><p>Bone marrow (BM)-derived mesenchymal stromal cells (MSCs) are promising candidates for cell-based therapy for several immune-mediated inflammatory diseases (IMIDs) due to their multiplicity of immunomodulatory and reparative properties and favorable safety profile. However, although preclinical data were encouraging, the clinical benefit demonstrated in clinical trials of autologous MSC transplantation in a number of conditions has been less robust. This may be explained by the growing body of evidence pointing to abnormalities of the bone marrow microenvironment in IMIDs, including impaired MSC function. However, it is not currently known whether these abnormalities arise as a cause or consequence of disease, the role they play in disease initiation and/or progression, or whether they themselves are targets for disease modification. Here, we review current knowledge about the function of the BM microenvironment in IMIDs including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and type I diabetes, focusing on MSCs in particular. We predict that an improved understanding of disease-related changes in the bone marrow microenvironment including the role of MSCs in vivo, will yield new insights into pathophysiology and aid identification of new drug targets and optimization of cell-based therapy in IMIDs.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"219-229"},"PeriodicalIF":6.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940816/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138810076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genetic Manipulation Approaches to Enhance the Clinical Application of NK Cell-Based Immunotherapy.","authors":"Andreia Maia, Mubin Tarannum, Rizwan Romee","doi":"10.1093/stcltm/szad087","DOIUrl":"10.1093/stcltm/szad087","url":null,"abstract":"<p><p>Natural killer (NK) cells are a subset of cytotoxic lymphocytes within the innate immune system. While they are naturally cytotoxic, genetic modifications can enhance their tumor-targeting capability, cytotoxicity, persistence, tumor infiltration, and prevent exhaustion. These improvements hold the potential to make NK-cell-based immunotherapies more effective in clinical applications. Currently, several viral and non-viral technologies are used to genetically modify NK cells. For nucleic acid delivery, non-viral methods such as electroporation, lipid nanoparticles, lipofection, and DNA transposons have gained popularity in recent years. On the other hand, viral methods including lentivirus, gamma retrovirus, and adeno-associated virus, remain widely used for gene delivery. Furthermore, gene editing techniques such as clustered regularly interspaced short-palindromic repeats-based, zinc finger nucleases, and transcription activator-like effector nucleases are the pivotal methodologies in this field. This review aims to provide a comprehensive overview of chimeric antigen receptor (CAR) arming strategies and discuss key gene editing techniques. These approaches collectively aim to enhance NK cell/NK cell CAR-based immunotherapies for clinical translation.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"230-242"},"PeriodicalIF":6.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}