Diana Lim, Ickhee Kim, Qianqian Song, Ji Hyun Kim, Anthony Atala, John D Jackson, James J Yoo
{"title":"Development and intra-renal delivery of renal progenitor organoids for effective integration in vivo.","authors":"Diana Lim, Ickhee Kim, Qianqian Song, Ji Hyun Kim, Anthony Atala, John D Jackson, James J Yoo","doi":"10.1093/stcltm/szae078","DOIUrl":"10.1093/stcltm/szae078","url":null,"abstract":"<p><p>Renal progenitor organoids have been proposed as a source of tissue for kidney regeneration; however, their clinical translatability has not been demonstrated due to an inability to mass-produce comprehensive renal progenitor organoids and the lack of an effective intra-renal delivery platform that facilitates rapid integration into functionally meaningful sites. This study addresses these shortcomings. Human-induced pluripotent stem cells were differentiated into renal progenitor cells using an established protocol and aggregated using a novel assembly method to produce high yields of organoids. Organoids were encapsulated in collagen-based scaffolds for in vitro study and in vivo implantation into mouse renal cortex. In vitro, the organoids demonstrated sustained cell viability and renal structure maturation over time. In vivo delivered organoids showed rapid integration into host renal parenchyma while showing tubular and glomerular-like structure development and maturity markers. This proof-of-concept study presents many promising results, providing a system of renal organoid formation and delivery that may support the development of clinically translatable therapies and the advancement of in vitro renal organoid studies.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weizhao Li, Chi Zhang, Tianshun Gao, Yazhou Sun, Huan Yang, Lixiang Liu, Ming Shi, Lu Ding, Changlin Zhang, David Y B Deng, Tian Li
{"title":"Human umbilical cord mesenchymal stem cells small extracellular vesicles-derived miR-370-3p inhibits cervical precancerous lesions by targeting DHCR24.","authors":"Weizhao Li, Chi Zhang, Tianshun Gao, Yazhou Sun, Huan Yang, Lixiang Liu, Ming Shi, Lu Ding, Changlin Zhang, David Y B Deng, Tian Li","doi":"10.1093/stcltm/szae087","DOIUrl":"10.1093/stcltm/szae087","url":null,"abstract":"<p><strong>Background: </strong>Cervical cancer is often caused by persistent high-risk human papillomavirus (HPV) infection, causing precancerous lesions. Human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (hucMSC-sEV) exhibit diverse effects on tumors. This study investigates hucMSC-sEV, the impact and mechanisms on HPV-positive cervical precancerous lesion cells to provide new treatment insights.</p><p><strong>Materials and methods: </strong>We previously obtained hucMSC and hucMSC-sEV. In vitro experiments evaluated hucMSC-sEV effects on the proliferation and migration of S12 cells (derived from cervical precancerous lesions). Bioinformatics identified key microRNA components, and their impact on S12 cell proliferation and migration was investigated. The target gene of the microRNA component was predicted and confirmed via bioinformatics and dual-luciferase reporter assays. Lentiviral systems overexpressed target gene in S12 cells to examine the effects on microRNA impacts. SH-42 inhibitor was used to investigate target gene treatment potential. Immunohistochemistry assessed target gene expression in cervical precancerous lesions tissue.</p><p><strong>Results: </strong>hucMSC-sEV significantly inhibited S12 cell proliferation and migration. Bioinformatics identified miR-370-3p as an effective cargo, which also suppressed S12 cell proliferation and migration. miR-370-3p was confirmed targeting DHCR24 (24-Dehydrocholesterol Reductase). DHCR24 overexpression reversed miR-370-3p's inhibitory effects, while SH-42 counteracted DHCR24 overexpression's promoting effects. Clinical specimen analysis supported these findings, demonstrating a positive correlation between DHCR24 protein expression and cervical precancerous lesions' progression.</p><p><strong>Conclusions: </strong>hucMSC-sEV inhibits S12 cell proliferation and migration, mediated by miR-370-3p targeting DHCR24 to regulate cellular cholesterol content. DHCR24 inhibition reduces the cholesterol level and cell functions, suggesting its potential as a therapeutic target in cervical precancerous lesions.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142649179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Bauchat, Veronika Polishchuk, Vanessa A Fabrizio, Jennifer E Brondon, Kristin M Page, Timothy A Driscoll, Paul L Martin, Kris M Mahadeo, Joanne Kurtzberg, Vinod K Prasad
{"title":"Safety and feasibility of umbilical cord blood transplantation in children with neuronal ceroid lipofuscinosis: a retrospective study.","authors":"Andrea Bauchat, Veronika Polishchuk, Vanessa A Fabrizio, Jennifer E Brondon, Kristin M Page, Timothy A Driscoll, Paul L Martin, Kris M Mahadeo, Joanne Kurtzberg, Vinod K Prasad","doi":"10.1093/stcltm/szae080","DOIUrl":"10.1093/stcltm/szae080","url":null,"abstract":"<p><p>Ceroid lipofuscinosis neuronal (CLN) encompasses rare inherited neurodegenerative disorders that present in childhood with clinical features including epilepsy, psychomotor delay, progressive vision loss, and premature death. Published experience utilizing umbilical cord blood transplant (UCBT) for these disorders is limited. This retrospective analysis includes patients with CLN (2, 3, and 5) who underwent UCBT from 2012 to 2020. All subjects (n = 8) received standard-of-care myeloablative conditioning. Four also enrolled in clinical trial NCT02254863 and received intrathecal DUOC-01 cells posttransplant. Median age at UCBT was 5.9 years. All subjects achieved neutrophil engraftment with >95% donor chimerism at a median of 28.5 days. Sinusoidal obstructive syndrome was not observed. Severe acute graft-versus-host disease occurred in 12.5%. Other complications included autoimmune hemolytic anemia (25%) and viral reactivation/infection (62.5%). No transplant-related mortality was observed. Two CLN2 patients died, 1 from progressive disease and 1 from unknown cause at days +362 and +937, respectively. With median follow-up of 8 years, overall survival at 100 days and 24 months was 100% and 88%, respectively. Three of 4 CLN3 subjects stabilized Hamburg motor and language scores. While UCBT appears safe and feasible in these patients, given the variable expression and natural history, extended follow-up and further studies are needed to elucidate the potential impact of UCBT on clinical outcomes.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821899/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandra E Johns, Arens Taga, Andriana Charalampopoulou, Sarah K Gross, Khalil Rust, Brett A McCray, Jeremy M Sullivan, Nicholas J Maragakis
{"title":"Exploring P2X7 receptor antagonism as a therapeutic target for neuroprotection in an hiPSC motor neuron model.","authors":"Alexandra E Johns, Arens Taga, Andriana Charalampopoulou, Sarah K Gross, Khalil Rust, Brett A McCray, Jeremy M Sullivan, Nicholas J Maragakis","doi":"10.1093/stcltm/szae074","DOIUrl":"10.1093/stcltm/szae074","url":null,"abstract":"<p><p>ATP is present in negligible concentrations in the interstitium of healthy tissues but accumulates to significantly higher concentrations in an inflammatory microenvironment. ATP binds to 2 categories of purine receptors on the surface of cells, the ionotropic P2X receptors and metabotropic P2Y receptors. Included in the family of ionotropic purine receptors is P2X7 (P2X7R), a non-specific cation channel with unique functional and structural properties that suggest it has distinct roles in pathological conditions marked by increased extracellular ATP. The role of P2X7R has previously been explored in microglia and astrocytes within the context of neuroinflammation, however the presence of P2X7R on human motor neurons and its potential role in neurodegenerative diseases has not been the focus of the current literature. We leveraged the use of human iPSC-derived spinal motor neurons (hiPSC-MN) as well as human and rodent tissue to demonstrate the expression of P2X7R on motor neurons. We extend this observation to demonstrate that these receptors are functionally active on hiPSC-MN and that ATP can directly induce death via P2X7R activation in a dose dependent manner. Finally, using a highly specific P2X7R blocker, we demonstrate how modulation of P2X7R activation on motor neurons is neuroprotective and could provide a unique pharmacologic target for ATP-induced MN death that is distinct from the role of ATP as a modulator of neuroinflammation.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1198-1212"},"PeriodicalIF":5.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Ji Lee, Jian Jiang, Soo Hyun Kim, Chris Hyunchul Jo
{"title":"Second generation multiple channeling using platelet-rich plasma enhances cartilage repair through recruitment of endogenous MSCs in bone marrow.","authors":"Min Ji Lee, Jian Jiang, Soo Hyun Kim, Chris Hyunchul Jo","doi":"10.1093/stcltm/szae075","DOIUrl":"10.1093/stcltm/szae075","url":null,"abstract":"<p><p>In the treatment of cartilage defects, a key factor is the adequate and specific recruitment of endogenous stem cells to the site of injury. However, the limited quantity and capability of endogenous bone marrow stem cells (BM MSCs) often result in the formation of fibrocartilage when using bone marrow stimulation (BMS) procedures. We engineered second-generation platelet-rich plasma (2G PRP) with defibrinogenating and antifibrinolytic agents for injection into the condyle of the right femur, followed by multiple channeling (MCh) 5 days later. This approach aims to enhance repair by promoting the local proliferation and migration of BM MSCs to the full-thickness knee cartilage defect (ftKD). In our in vitro study, 2G PRP increased the number of endogenous BM MSCs and their ability to migrate toward an IL-1β-induced inflammatory condition. This significance was further confirmed by in vivo proliferation results after injection of 2G PRP into the condyle of rats. Fifty-four healthy male Sprague-Dawley rats were divided into 3 groups (ftKD, MCh, 2G MCh) for 3 time points (2 weeks, 4 weeks, 8 weeks). The 2G MCh (2G PRP injection + MCh) groups significantly improved cartilage formation at 4 and 8 weeks compared to the ftKD and MCh groups. The 2G MCh initiated cartilage repair earlier than MCh and significantly enhanced up to 8 weeks. This study demonstrated that 2G PRP increased the number of BM MSCs through the enhancement of proliferation and recruitment into the injured site, thereby improving articular cartilage repair.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1213-1227"},"PeriodicalIF":5.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Amnion membrane hydrogel and amnion membrane powder accelerate wound healing in a full thickness porcine skin wound model.","authors":"","doi":"10.1093/stcltm/szae046","DOIUrl":"10.1093/stcltm/szae046","url":null,"abstract":"","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1230"},"PeriodicalIF":5.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Davide Marotta, Laraib Ijaz, Lilianne Barbar, Madhura Nijsure, Jason Stein, Nicolette Pirjanian, Ilya Kruglikov, Twyman Clements, Jana Stoudemire, Paula Grisanti, Scott A Noggle, Jeanne F Loring, Valentina Fossati
{"title":"Effects of microgravity on human iPSC-derived neural organoids on the International Space Station.","authors":"Davide Marotta, Laraib Ijaz, Lilianne Barbar, Madhura Nijsure, Jason Stein, Nicolette Pirjanian, Ilya Kruglikov, Twyman Clements, Jana Stoudemire, Paula Grisanti, Scott A Noggle, Jeanne F Loring, Valentina Fossati","doi":"10.1093/stcltm/szae070","DOIUrl":"10.1093/stcltm/szae070","url":null,"abstract":"<p><p>Research conducted on the International Space Station (ISS) in low-Earth orbit (LEO) has shown the effects of microgravity on multiple organs. To investigate the effects of microgravity on the central nervous system, we developed a unique organoid strategy for modeling specific regions of the brain that are affected by neurodegenerative diseases. We generated 3-dimensional human neural organoids from induced pluripotent stem cells (iPSCs) derived from individuals affected by primary progressive multiple sclerosis (PPMS) or Parkinson's disease (PD) and non-symptomatic controls, by differentiating them toward cortical and dopaminergic fates, respectively, and combined them with isogenic microglia. The organoids were cultured for a month using a novel sealed cryovial culture method on the International Space Station (ISS) and a parallel set that remained on Earth. Live samples were returned to Earth for analysis by RNA expression and histology and were attached to culture dishes to enable neurite outgrowth. Our results show that both cortical and dopaminergic organoids cultured in LEO had lower levels of genes associated with cell proliferation and higher levels of maturation-associated genes, suggesting that the cells matured more quickly in LEO. This study is continuing with several more missions in order to understand the mechanisms underlying accelerated maturation and to investigate other neurological diseases. Our goal is to make use of the opportunity to study neural cells in LEO to better understand and treat neurodegenerative disease on Earth and to help ameliorate potentially adverse neurological effects of space travel.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1186-1197"},"PeriodicalIF":5.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Umar Sajjad, Muhammad Ahmed, M Zohaib Iqbal, Mahrukh Riaz, Muhammad Mustafa, Thomas Biedermann, Agnes S Klar
{"title":"Exploring mesenchymal stem cells homing mechanisms and improvement strategies.","authors":"Umar Sajjad, Muhammad Ahmed, M Zohaib Iqbal, Mahrukh Riaz, Muhammad Mustafa, Thomas Biedermann, Agnes S Klar","doi":"10.1093/stcltm/szae045","DOIUrl":"10.1093/stcltm/szae045","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) are multipotent cells with high self-renewal and multilineage differentiation abilities, playing an important role in tissue healing. Recent advancements in stem cell-based technologies have offered new and promising therapeutic options in regenerative medicine. Upon tissue damage, MSCs are immediately mobilized from the bone marrow and move to the injury site via blood circulation. Notably, allogenically transplanted MSCs can also home to the damaged tissue site. Therefore, MSCs hold great therapeutic potential for curing various diseases. However, one major obstacle to this approach is attracting MSCs specifically to the injury site following systemic administration. In this review, we describe the molecular pathways governing the homing mechanism of MSCs and various strategies for improving this process, including targeted stem cell administration, target tissue modification, in vitro priming, cell surface engineering, genetic modifications, and magnetic guidance. These strategies are crucial for directing MSCs precisely to the injury site and, consequently, enhancing their migration and local tissue repair properties. Specifically, our review provides a guide to improving the therapeutic efficacy of clinical applications of MSCs through optimized in vivo administration and homing capacities.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1161-1177"},"PeriodicalIF":5.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayesha Rehman, Sameer Kumar Panda, Martina Torsiello, Martina Marigliano, Camilla Carmela Tufano, Aditya Nigam, Zahida Parveen, Gianpaolo Papaccio, Marcella La Noce
{"title":"The crosstalk between primary MSCs and cancer cells in 2D and 3D cultures: potential therapeutic strategies and impact on drug resistance.","authors":"Ayesha Rehman, Sameer Kumar Panda, Martina Torsiello, Martina Marigliano, Camilla Carmela Tufano, Aditya Nigam, Zahida Parveen, Gianpaolo Papaccio, Marcella La Noce","doi":"10.1093/stcltm/szae077","DOIUrl":"10.1093/stcltm/szae077","url":null,"abstract":"<p><p>The tumor microenvironment (TME) significantly influences cancer progression, and mesenchymal stem cells (MSCs) play a crucial role in interacting with tumor cells via paracrine signaling, affecting behaviors such as proliferation, migration, and epithelial-mesenchymal transition. While conventional 2D culture models have provided valuable insights, they cannot fully replicate the complexity and diversity of the TME. Therefore, developing 3D culture systems that better mimic in vivo conditions is essential. This review delves into the heterogeneous nature of the TME, spotlighting MSC-tumor cellular signaling and advancements in 3D culture technologies. Utilizing MSCs in cancer therapy presents opportunities to enhance treatment effectiveness and overcome resistance mechanisms. Understanding MSC interactions within the TME and leveraging 3D culture models can advance novel cancer therapies and improve clinical outcomes. Additionally, this review underscores the therapeutic potential of engineered MSCs, emphasizing their role in targeted anti-cancer treatments.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1178-1185"},"PeriodicalIF":5.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}