Pengyu Hong, Dianri Wang, Yue Wu, Qi Zhang, Pan Liu, Jian Pan, Mei Yu, Weidong Tian
{"title":"A novel long noncoding RNA AK029592 contributes to thermogenic adipocyte differentiation.","authors":"Pengyu Hong, Dianri Wang, Yue Wu, Qi Zhang, Pan Liu, Jian Pan, Mei Yu, Weidong Tian","doi":"10.1093/stcltm/szae056","DOIUrl":null,"url":null,"abstract":"<p><p>Exploration of factors originating from brown adipose tissue that govern the thermogenic adipocyte differentiation is imperative for comprehending the regulatory framework underlying brown fat biogenesis and for devising therapeutic approaches for metabolic disorders associated with obesity. Prior evidence has illuminated the pivotal role of long noncoding RNAs (lncRNAs) in orchestrating thermogenesis within adipose tissue. Here, we aimed to explore and identify the critical lncRNA that could promote thermogenic adipocyte differentiation and to provide a novel strategy to treat obesity-related metabolic diseases in the future. In this study, through amalgamation with our previous lncRNA microarray data from small extracellular vesicles derived from BAT (sEV-BAT), we have identified sEV-BAT-enriched lncRNA AK029592 as a critical constituent of the thermogenic program, which actively fostered beige adipocyte differentiation and enhanced the thermogenic capacities of adipose tissue. Moreover, lncRNA AK029592 could sponge miR-199a-5p in adipocytes to stimulate thermogenic gene expression. Consequently, we concluded lncRNA AK029592 as a crucial lncRNA component of the thermogenic program that regulated beige adipocyte differentiation and white adipose tissue browning, thereby providing a novel therapeutic target and strategy in combating obesity and related metabolic diseases.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"985-1000"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae056","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Exploration of factors originating from brown adipose tissue that govern the thermogenic adipocyte differentiation is imperative for comprehending the regulatory framework underlying brown fat biogenesis and for devising therapeutic approaches for metabolic disorders associated with obesity. Prior evidence has illuminated the pivotal role of long noncoding RNAs (lncRNAs) in orchestrating thermogenesis within adipose tissue. Here, we aimed to explore and identify the critical lncRNA that could promote thermogenic adipocyte differentiation and to provide a novel strategy to treat obesity-related metabolic diseases in the future. In this study, through amalgamation with our previous lncRNA microarray data from small extracellular vesicles derived from BAT (sEV-BAT), we have identified sEV-BAT-enriched lncRNA AK029592 as a critical constituent of the thermogenic program, which actively fostered beige adipocyte differentiation and enhanced the thermogenic capacities of adipose tissue. Moreover, lncRNA AK029592 could sponge miR-199a-5p in adipocytes to stimulate thermogenic gene expression. Consequently, we concluded lncRNA AK029592 as a crucial lncRNA component of the thermogenic program that regulated beige adipocyte differentiation and white adipose tissue browning, thereby providing a novel therapeutic target and strategy in combating obesity and related metabolic diseases.
期刊介绍:
STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal.
STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes.
The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.