Superconductor Science and Technology最新文献

筛选
英文 中文
Amorphous B coated Mg nanopowder induces low angle grain boundaries and enhances J c of MgB2 wire 非晶 B 涂层纳米镁粉诱导低角度晶界并增强 MgB2 线材的 J c
Superconductor Science and Technology Pub Date : 2024-06-09 DOI: 10.1088/1361-6668/ad55cf
D. Xi, Xinwei Cai, Qingyang Wang, Chen Guo, Li Li, Meng Song, Yan Zhang, Dongliang Wang, Yanwei Ma, Guo Yan, Furen Wang, Zizhao Gan
{"title":"Amorphous B coated Mg nanopowder induces low angle grain boundaries and enhances J\u0000 c of MgB2 wire","authors":"D. Xi, Xinwei Cai, Qingyang Wang, Chen Guo, Li Li, Meng Song, Yan Zhang, Dongliang Wang, Yanwei Ma, Guo Yan, Furen Wang, Zizhao Gan","doi":"10.1088/1361-6668/ad55cf","DOIUrl":"https://doi.org/10.1088/1361-6668/ad55cf","url":null,"abstract":"\u0000 In this work, amorphous B coated Mg nanopowder (BCMN) is synthesized and the transport properties of MgB2 superconducting wire is significantly enhanced with different contents of BCMN. BCMN has high reactivity since it contains nanoscale Mg and amorphous B. It allows to obtain MgB2 nanocrystals at only 400 °C with the compression of a lattice parameter and expansion of c lattice parameters compared to MgB2 formed by micron-sized Mg mixed with amorphous B (Mg+B) powders. These MgB2 nanocrystals serve as crystal nuclei and promote the crystallization and growth of MgB2. The mismatch of different lattice parameters prepared using BCMN and M+B powders induces low angle grain boundaries (LAGBs) embedded in MgB2 grains. LAGB acts as plane defects, leading to a dominant surface pinning mechanism and an enhancement in the critical current density dependent on the magnetic field (J\u0000 c(H)). At 4.2 K in 6 T, transport critical current density (J\u0000 ct) of wire with 20 wt.% BCMN is 6.7×104 A·cm−2, approximately 1.8 times wire with 0 wt.% BCMN.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":" 37","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141366811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-mode neuron design with deterministic and non-deterministic operations using adiabatic superconductor devices 利用绝热超导体器件设计具有确定性和非确定性操作的双模神经元
Superconductor Science and Technology Pub Date : 2024-06-09 DOI: 10.1088/1361-6668/ad55ce
Tomharu Yamauchi, N. Takeuchi, Nobuyuki Yoshikawa, Hao San, O. Chen
{"title":"Dual-mode neuron design with deterministic and non-deterministic operations using adiabatic superconductor devices","authors":"Tomharu Yamauchi, N. Takeuchi, Nobuyuki Yoshikawa, Hao San, O. Chen","doi":"10.1088/1361-6668/ad55ce","DOIUrl":"https://doi.org/10.1088/1361-6668/ad55ce","url":null,"abstract":"\u0000 In this research, we unveil an innovative strategy in neuromorphic computing by developing a neuron model tailored for the energy-efficient Adiabatic Quantum-Flux-Parametron (AQFP) logic. This model is particularly aimed at enhancing neural network accelerators. Our design of the AQFP-based neuron operates effectively in both deterministic and non-deterministic modes. In deterministic mode, the design relies on superconducting inductive coupling to activate neurons by comparing the sum of AQFP signal currents against a tunable threshold. For non-deterministic operation, we demonstrate how altering specific circuit parameters can correlate these aggregated currents with the non-deterministic operational range of an AQFP current comparator. We verified its versatility and functionality by fabricating varied circuits and conducting extensive tests, confirming its practical application potential. Our work not only showcases the practical implementation of AQFP in neuromorphic computing but also sets a foundation for future advancements in energy-efficient AI hardware.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":" 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141366784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AC transport loss analysis of HTS stack busbars for all-electric aircraft with harmonics and DC offset considerations 考虑谐波和直流偏移因素的全电动飞机 HTS 叠层母线交流传输损耗分析
Superconductor Science and Technology Pub Date : 2024-06-07 DOI: 10.1088/1361-6668/ad558c
M. Abdioğlu, Gaurav Gautam, Min Zhang, Weijia Yuan
{"title":"AC transport loss analysis of HTS stack busbars for all-electric aircraft with harmonics and DC offset considerations","authors":"M. Abdioğlu, Gaurav Gautam, Min Zhang, Weijia Yuan","doi":"10.1088/1361-6668/ad558c","DOIUrl":"https://doi.org/10.1088/1361-6668/ad558c","url":null,"abstract":"\u0000 This paper presents a study of the current carrying capacity and AC loss of high-temperature superconducting (HTS) stacks to be used in busbar applications for all-electric aircraft. A 2D model was developed using COMSOL Multiphysics with a T-A formulation for detailed analysis. The study began by applying a stable 20 kA DC offset current to the HTS stacks, to simulate practical operating conditions. Firstly, the behaviour of the critical current was studied under self-field conditions for stacks with different number of HTS tapes and spacing. Secondly, AC ripple currents were introduced together with DC offsets and the effects of 3rd and 5th harmonic distortions (HD) were studied. The results show that configurations with 40 tapes and gaps of more than 2 mm are considered suitable for safe current transport under DC conditions. On the other hand, increasing the tape spacing leads to an increase in the safe transport current ripple, due to the reduced magnetic field interaction within the stack. In addition, the transport loss decreases as the air gap increases due to the reduction in the self-field, whereas it increases as the number of strips increases. The influence of the 3rd HD on the transport loss is minimal at a ripple current of 1% and slightly noticeable at 2%. However, it becomes more obvious as the ripple current approaches the critical value. Remarkably, even cases with equivalent total harmonic distortion (THD) show significantly higher transport losses when characterised by higher 5th HD than their counterparts with 3rd HD. This comprehensive analysis provides valuable information on the performance characteristics of HTS stacks in all-electric aircraft busbar applications and offers important insights for the development and optimisation of these systems in practical aerospace applications.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":" 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dependence of operating frequency of NbN toggle flip-flop on parameters of NbN josephson junctions 氮化铌肘动触发器的工作频率与氮化铌约瑟夫森结参数的关系
Superconductor Science and Technology Pub Date : 2024-06-06 DOI: 10.1088/1361-6668/ad54f4
Yingyi Shao, Huiwu Wang, Minghui Niu, Wei Peng, Jie Ren, Zhen Wang
{"title":"The dependence of operating frequency of NbN toggle flip-flop on parameters of NbN josephson junctions","authors":"Yingyi Shao, Huiwu Wang, Minghui Niu, Wei Peng, Jie Ren, Zhen Wang","doi":"10.1088/1361-6668/ad54f4","DOIUrl":"https://doi.org/10.1088/1361-6668/ad54f4","url":null,"abstract":"\u0000 We performed a comprehensive investigation of the relationship between the maximum operating frequency of the NbN superconducting frequency divider and the key parameters of the NbN Josephson junction. We designed a superconducting frequency divider that uses a single NbN Josephson junction as a pulse generator, several NbN Josephson transmission lines (JTLs), an NbN Toggle Flip-flop (TFF), and a load. By comparing the bias voltage Vin of the pulse generator with the output voltage Vout of the load, we determined if the circuit was working correctly and calculated the maximum operating frequency fmax. Additionally, we employed JSICsim software for simulations to analyze the impact of key parameters of the NbN Josephson junction, such as critical current density Jc, gap voltage Vg, characteristic voltage Vc, quality factor Q, and specific capacitance Cs, on fmax. The simulation results demonstrate that fmax increases with increasing Jc and Q. Specifically when Jc exceeds 300 kA/cm2 and Q surpasses 4, the superconducting frequency divider can achieve a fmax of 1 THz. Furthermore, we successfully fabricated a superconducting frequency divider using a 10 kA/cm2 process and tested a fmax of 260 GHz, with a deviation of approximately 6% from the simulation results.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"144 7‐8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141381283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
26.86-tesla direct-current magnetic field generated with an all-REBCO superconducting magnet 全 REBCO 超导磁体产生的 26.86 特斯拉直流磁场
Superconductor Science and Technology Pub Date : 2024-06-06 DOI: 10.1088/1361-6668/ad54f9
Xintao Zhang, Shuai Hu, Liang Guo, Wen Hong, Zhaoran Wang, Hong-jun Ma, Shuqing Zhang, J. Qin, Chao Zhou, Peng Gao, H. Jin, Liangjun Shao, Ti-Ming Qu, Zhiyong Hong, Fang Liu, Hua-jun Liu, Yuntao Song, Jiangang Li
{"title":"26.86-tesla direct-current magnetic field generated with an all-REBCO superconducting magnet","authors":"Xintao Zhang, Shuai Hu, Liang Guo, Wen Hong, Zhaoran Wang, Hong-jun Ma, Shuqing Zhang, J. Qin, Chao Zhou, Peng Gao, H. Jin, Liangjun Shao, Ti-Ming Qu, Zhiyong Hong, Fang Liu, Hua-jun Liu, Yuntao Song, Jiangang Li","doi":"10.1088/1361-6668/ad54f9","DOIUrl":"https://doi.org/10.1088/1361-6668/ad54f9","url":null,"abstract":"\u0000 This paper reports an all REBCO (REBa2Cu3Ox, where RE=Y, Gd) superconducting magnet that generated a direct-current magnetic field of 26.86 T at 4.2 K in self-field, which is the highest magnetic field achieved by the high temperature superconducting (HTS) magnet. The magnet consists of a stack of 10 double pancake (DP) coils wound with two different width REBCO tapes, and the no-insulation (NI) winding technology was applied to increase its engineering current density. The inner and outer winding diameters and overall height of the magnet are 30 mm, 103.98 mm, and 102.6 mm, respectively. In order to control the stress risk in HTS magnet, the over-banding made of high elastic modulus stainless steel tapes was employed to the magnet. In addition, no obvious degradation was found in the performance of the magnet after quench at 26.86 T of 295.5 A. These test results demonstrate the great potential of REBCO magnets in high field applications.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"73 s314","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141376577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ synchrotron x-ray photoelectron spectroscopy study of medium-temperature baking of niobium for SRF application 用于 SRF 的铌中温焙烧原位同步辐射 X 射线光电子能谱研究
Superconductor Science and Technology Pub Date : 2024-06-06 DOI: 10.1088/1361-6668/ad4825
A Prudnikava, Y Tamashevich, A Makarova, D Smirnov, J Knobloch
{"title":"In-situ synchrotron x-ray photoelectron spectroscopy study of medium-temperature baking of niobium for SRF application","authors":"A Prudnikava, Y Tamashevich, A Makarova, D Smirnov, J Knobloch","doi":"10.1088/1361-6668/ad4825","DOIUrl":"https://doi.org/10.1088/1361-6668/ad4825","url":null,"abstract":"In order to determine optimal parameters of vacuum thermal processing of superconducting radiofrequency niobium cavities exhaustive information on the initial chemical state of niobium and its modification upon a vacuum heat treatment is required. In the present work the chemical composition of the niobium surface upon ultra-high vacuum baking at 200 <sup>∘</sup>C–400 <sup>∘</sup>C similar to ‘medium-temperature baking’ and ‘furnace baking’ of cavities is explored <italic toggle=\"yes\">in-situ</italic> by synchrotron x-ray photoelectron spectroscopy (XPS). Our findings imply that below the critical thickness of the <inline-formula>\u0000<tex-math><?CDATA $textrm{Nb}_2textrm{O}_5$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mtext>Nb</mml:mtext><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mtext>O</mml:mtext><mml:mn>5</mml:mn></mml:msub></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"sustad4825ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> layer (<inline-formula>\u0000<tex-math><?CDATA ${approx}1textrm{nm}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mo>≈</mml:mo></mml:mrow><mml:mn>1</mml:mn><mml:mtext>nm</mml:mtext></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"sustad4825ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>) niobium starts to interact actively with surface impurities, such as carbon and phosphorus. By studying the kinetics of the native oxide reduction, the activation energy and the rate-constant relation have been determined and used for the calculation of the oxygen-concentration depth profiles. It has been established that the controlled diffusion of oxygen is realized at temperatures 200 <sup>∘</sup>C–300 <sup>∘</sup>C, and the native-oxide layer represents an oxygen source, while at 400 <sup>∘</sup>C the pentoxide is completely reduced and the doping level is determined by an ambient oxygen partial pressure. Fluorine (F to Nb atomic ratio is 0.2) after the buffered chemical polishing was found to be incorporated into the surface layer probed by XPS (<inline-formula>\u0000<tex-math><?CDATA ${approx}4.6,textrm{nm}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mo>≈</mml:mo></mml:mrow><mml:mn>4.6</mml:mn><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mtext>nm</mml:mtext></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"sustad4825ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>), and its concentration increased during the low-temperature baking (F/Nb = 0.35 at 230 <sup>∘</sup>C) and depleted at higher temperatures (F/Nb = 0.11 at 400 <sup>∘</sup>C). Thus, the influence of fluorine on the performance of mid-T baked, nitrogen-doped and particularly mild-baked (120 <sup>∘</sup>C/48 h) cavities must be considered. The possible role of fluorine in the educed <inline-formula>\u0000<tex-math><?CDATA $textrm{Nb}^{+5} rightarrow textrm{Nb}^{+4}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mtext>Nb</mml:mtext><mml:mrow><","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141524328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat transfer in superconducting nanowire single-photon detectors: mechanism and modulation 超导纳米线单光子探测器中的热传递:机制与调制
Superconductor Science and Technology Pub Date : 2024-06-06 DOI: 10.1088/1361-6668/ad54f2
Wenlei Yin, Hao Wang, Xiaohan Wang, Rui Yin, Qi Chen, X. Jia, Huabing Wang, La-bao Zhang, Peiheng Wu
{"title":"Heat transfer in superconducting nanowire single-photon detectors: mechanism and modulation","authors":"Wenlei Yin, Hao Wang, Xiaohan Wang, Rui Yin, Qi Chen, X. Jia, Huabing Wang, La-bao Zhang, Peiheng Wu","doi":"10.1088/1361-6668/ad54f2","DOIUrl":"https://doi.org/10.1088/1361-6668/ad54f2","url":null,"abstract":"\u0000 Superconducting nanowire single-photon detectors (SNSPDs) have been widely applied in quantum information and deep-space exploration owing to their high detection efficiency, low dark count rate, and wide spectral response. In particular, the heat transfer in SNSPDs largely affects their performance parameters (e.g., quantum efficiency, count rates and recovery time), which can be modulated to optimize the performance and develop novel devices. Considering the potential of SNSPDs and the significance of heat transfer, the most recent progress toward understanding the mechanism and the modulation of heat transfer in SNSPDs is critically reviewed, with particular emphasis on the macroscopic correlation with device performance parameters and the microscopic analysis of existing theories, especially at interfaces. Furthermore, representative novel devices inspired by the need for heat transfer modulation in SNSPDs are discussed in detail. Finally, the development of heat transfer in SNSPDs is placed in perspective with the aim of highlighting future theoretical directions and practical applications.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"7 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141380576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative analysis of ITER Poloidal Field joints through rigorous resistivity parameterization 通过严格的电阻率参数化对国际热核聚变实验堆 Poloidal Field 接头进行定量分析
Superconductor Science and Technology Pub Date : 2024-06-06 DOI: 10.1088/1361-6668/ad54f6
Jianfeng Huang, Y. Ilyin, Y. Zhai, H. T. Ten Kate, A. Nijhuis
{"title":"Quantitative analysis of ITER Poloidal Field joints through rigorous resistivity parameterization","authors":"Jianfeng Huang, Y. Ilyin, Y. Zhai, H. T. Ten Kate, A. Nijhuis","doi":"10.1088/1361-6668/ad54f6","DOIUrl":"https://doi.org/10.1088/1361-6668/ad54f6","url":null,"abstract":"\u0000 The lap-type twin-box joints are integral components in ITER fusion magnets, with profound implications for magnet stability based on their electro-magnetic, thermal, and mechanical properties. Throughout the extensive R&D process, rigorous qualification tests are conducted to meet stringent standards. However, existing tests often prioritize global performance, which lack of strand-level details due to inherent limitations in test setups. Furthermore, as the referencing test facility of SULTAN falls short in replicating relevant ITER operating conditions, numerical methods that offer both accuracy and the requisite level of detail for comprehensive magnet and component analysis and development are necessary. This paper introduces the utilization of the JackPot-AC/DC code, developed at the University of Twente, as a fundamental tool for achieving strand-level precision in handling CICCs and joints, which encompasses copper and solder components. The primary focus of this study is to obtain precise input parameters, emphasizing their role in conducting a quantitative analysis using JackPot-AC/DC. The investigation centers on an ITER PF5 joint (PFJEU6), where contact resistances and AC losses were measured under parallel magnetic fields. Given the constraints in the measured results, an enhanced parameterization is performed to derive precise resistivity and solder-related parameters. Additionally, sensitivity analyses of individual parameters and cable compact configurations are thoughtfully evaluated. With the optimal input parameters acquired, systematic simulations of the joint exposed to transverse magnetic fields, mimicking SULTAN and ITER operating conditions, are processed and validated against experimental results. This research establishes a comprehensive foundation for the analysis of lap-type twin-box joints, including DC, AC, and stability properties. The outcomes will significantly contribute to advancing the understanding of the intricate behavior of these joints in the context of fusion magnet applications.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141376952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flight verification of cooling self-sustaining high-temperature superconducting motor 冷却自持高温超导电机的飞行验证
Superconductor Science and Technology Pub Date : 2024-06-06 DOI: 10.1088/1361-6668/ad54f5
Jinxing Zheng, Jinxin Sun, Fei Liu, Xufeng Liu, Junyi Peng, Jiong Zhang, Chi Zhang, Lei Zhu, Xiaoliang Zhu, Chen Huang, Yuan Cheng, Dongdong Su
{"title":"Flight verification of cooling self-sustaining high-temperature superconducting motor","authors":"Jinxing Zheng, Jinxin Sun, Fei Liu, Xufeng Liu, Junyi Peng, Jiong Zhang, Chi Zhang, Lei Zhu, Xiaoliang Zhu, Chen Huang, Yuan Cheng, Dongdong Su","doi":"10.1088/1361-6668/ad54f5","DOIUrl":"https://doi.org/10.1088/1361-6668/ad54f5","url":null,"abstract":"The global shift towards sustainable development and technological advancements has propelled the energy transition trend. Recognizing the substantial environmental impact of conventional commercial airplanes, there is a growing urgency to develop a sophisticated superconducting motor system for commercial aviation. The advent of high-temperature superconducting motors presents a transformative leap, offering significant advantages in power density and efficiency when compared to traditional motors. To validate the issues that future liquid-hydrogen superconducting electric airplanes may encounter, a kilowatt-class aerospace high-temperature superconducting motor is designed. Based on the requirements of airborne applications, critical parameters such as electromagnetic characteristics, operating characteristics, and AC losses have been analyzed. Furthermore, extensive research and testing have been conducted on the superconducting motor magnet, leading to the successful assembly of a prototype. The superconducting motor has a rated output power of 2.7 kW and a rated speed of 5000 rpm. Rigorous ground operation performance tests have also been conducted to ensure the feasibility and reliability of the motor in practical applications. Benefiting from the topological structure design, the superconducting motor has an excellent sealing performance at low temperatures. The superconducting motor can maintain low temperature and high vacuum for a long time, when the vacuum pump is removed and the liquid nitrogen inlet is closed after the motor is completely cooled. The culmination of these endeavors is the realization of a successful flight validation of an unmanned aerial vehicle equipped with a high-temperature superconducting motor, demonstrating a sustained flight of nearly one hour.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"140 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141376864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale modelling on the multi-physical behaviors of high temperature superconducting magnets based on a combined global homogenization and local refinement scheme 基于全局均匀化和局部细化相结合方案的高温超导磁体多物理行为多尺度建模
Superconductor Science and Technology Pub Date : 2024-06-06 DOI: 10.1088/1361-6668/ad54f7
Ya-Ning Wang, Ze Jing
{"title":"Multiscale modelling on the multi-physical behaviors of high temperature superconducting magnets based on a combined global homogenization and local refinement scheme","authors":"Ya-Ning Wang, Ze Jing","doi":"10.1088/1361-6668/ad54f7","DOIUrl":"https://doi.org/10.1088/1361-6668/ad54f7","url":null,"abstract":"\u0000 The safe and stable operation is a crucial issue in the development of high-field high temperature superconducting (HTS) magnets. In this paper, we construct a multiscale model which couples the homogenized global (macroscopic) behavior and the refined local (mesoscopic) characteristics to simulate the coupled electromagnetic-mechanical-thermal behaviors of the HTS magnets. In the model, the numerical homogenization method is adopted to simulate the macroscopic behavior of the magnets and identify the “dangerous region” of the magnet which are prone to damage or quench. Then, a refined local sub-model which coupling with the macroscopic homogenization model is established by considering the microstructure and physical parameters of each components of the HTS tapes in the “dangerous region”. Thus, a combined global homogenization and local refinement scheme which balances the computational efficiency and numerical accuracy is developed to simulate the coupled multi-physical behaviors of the HTS magnets including the quench and its propagation. Our results show that the refined local sub-model can simulate the electromagnetic field and the stress-strain at the scale of the tape more accurately. Characteristics, such as the discontinuous stress distribution across the interfaces between different layers and the current shunt from the HTS layer to metallic layers during the quench process of HTS tapes, which are beyond the capability of the homogenization model, have also been well depicted by the refined sub-model.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"7 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141379747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信