利用绝热超导体器件设计具有确定性和非确定性操作的双模神经元

Tomharu Yamauchi, N. Takeuchi, Nobuyuki Yoshikawa, Hao San, O. Chen
{"title":"利用绝热超导体器件设计具有确定性和非确定性操作的双模神经元","authors":"Tomharu Yamauchi, N. Takeuchi, Nobuyuki Yoshikawa, Hao San, O. Chen","doi":"10.1088/1361-6668/ad55ce","DOIUrl":null,"url":null,"abstract":"\n In this research, we unveil an innovative strategy in neuromorphic computing by developing a neuron model tailored for the energy-efficient Adiabatic Quantum-Flux-Parametron (AQFP) logic. This model is particularly aimed at enhancing neural network accelerators. Our design of the AQFP-based neuron operates effectively in both deterministic and non-deterministic modes. In deterministic mode, the design relies on superconducting inductive coupling to activate neurons by comparing the sum of AQFP signal currents against a tunable threshold. For non-deterministic operation, we demonstrate how altering specific circuit parameters can correlate these aggregated currents with the non-deterministic operational range of an AQFP current comparator. We verified its versatility and functionality by fabricating varied circuits and conducting extensive tests, confirming its practical application potential. Our work not only showcases the practical implementation of AQFP in neuromorphic computing but also sets a foundation for future advancements in energy-efficient AI hardware.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":" 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-mode neuron design with deterministic and non-deterministic operations using adiabatic superconductor devices\",\"authors\":\"Tomharu Yamauchi, N. Takeuchi, Nobuyuki Yoshikawa, Hao San, O. Chen\",\"doi\":\"10.1088/1361-6668/ad55ce\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this research, we unveil an innovative strategy in neuromorphic computing by developing a neuron model tailored for the energy-efficient Adiabatic Quantum-Flux-Parametron (AQFP) logic. This model is particularly aimed at enhancing neural network accelerators. Our design of the AQFP-based neuron operates effectively in both deterministic and non-deterministic modes. In deterministic mode, the design relies on superconducting inductive coupling to activate neurons by comparing the sum of AQFP signal currents against a tunable threshold. For non-deterministic operation, we demonstrate how altering specific circuit parameters can correlate these aggregated currents with the non-deterministic operational range of an AQFP current comparator. We verified its versatility and functionality by fabricating varied circuits and conducting extensive tests, confirming its practical application potential. Our work not only showcases the practical implementation of AQFP in neuromorphic computing but also sets a foundation for future advancements in energy-efficient AI hardware.\",\"PeriodicalId\":21985,\"journal\":{\"name\":\"Superconductor Science and Technology\",\"volume\":\" 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductor Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6668/ad55ce\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad55ce","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们通过开发一种专为高能效绝热量子通量参数逻辑(AQFP)定制的神经元模型,揭示了神经形态计算的创新战略。该模型尤其旨在增强神经网络加速器。我们设计的基于 AQFP 的神经元可在确定性和非确定性模式下有效运行。在确定性模式下,该设计依靠超导电感耦合,通过比较 AQFP 信号电流之和与可调阈值来激活神经元。对于非确定性操作,我们展示了改变特定电路参数如何将这些聚集电流与 AQFP 电流比较器的非确定性操作范围相关联。我们通过制造各种电路和进行广泛测试,验证了其多功能性和功能性,证实了其实际应用潜力。我们的工作不仅展示了 AQFP 在神经形态计算中的实际应用,还为未来高能效人工智能硬件的发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-mode neuron design with deterministic and non-deterministic operations using adiabatic superconductor devices
In this research, we unveil an innovative strategy in neuromorphic computing by developing a neuron model tailored for the energy-efficient Adiabatic Quantum-Flux-Parametron (AQFP) logic. This model is particularly aimed at enhancing neural network accelerators. Our design of the AQFP-based neuron operates effectively in both deterministic and non-deterministic modes. In deterministic mode, the design relies on superconducting inductive coupling to activate neurons by comparing the sum of AQFP signal currents against a tunable threshold. For non-deterministic operation, we demonstrate how altering specific circuit parameters can correlate these aggregated currents with the non-deterministic operational range of an AQFP current comparator. We verified its versatility and functionality by fabricating varied circuits and conducting extensive tests, confirming its practical application potential. Our work not only showcases the practical implementation of AQFP in neuromorphic computing but also sets a foundation for future advancements in energy-efficient AI hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信