D. Xi, Xinwei Cai, Qingyang Wang, Chen Guo, Li Li, Meng Song, Yan Zhang, Dongliang Wang, Yanwei Ma, Guo Yan, Furen Wang, Zizhao Gan
{"title":"Amorphous B coated Mg nanopowder induces low angle grain boundaries and enhances J\n c of MgB2 wire","authors":"D. Xi, Xinwei Cai, Qingyang Wang, Chen Guo, Li Li, Meng Song, Yan Zhang, Dongliang Wang, Yanwei Ma, Guo Yan, Furen Wang, Zizhao Gan","doi":"10.1088/1361-6668/ad55cf","DOIUrl":null,"url":null,"abstract":"\n In this work, amorphous B coated Mg nanopowder (BCMN) is synthesized and the transport properties of MgB2 superconducting wire is significantly enhanced with different contents of BCMN. BCMN has high reactivity since it contains nanoscale Mg and amorphous B. It allows to obtain MgB2 nanocrystals at only 400 °C with the compression of a lattice parameter and expansion of c lattice parameters compared to MgB2 formed by micron-sized Mg mixed with amorphous B (Mg+B) powders. These MgB2 nanocrystals serve as crystal nuclei and promote the crystallization and growth of MgB2. The mismatch of different lattice parameters prepared using BCMN and M+B powders induces low angle grain boundaries (LAGBs) embedded in MgB2 grains. LAGB acts as plane defects, leading to a dominant surface pinning mechanism and an enhancement in the critical current density dependent on the magnetic field (J\n c(H)). At 4.2 K in 6 T, transport critical current density (J\n ct) of wire with 20 wt.% BCMN is 6.7×104 A·cm−2, approximately 1.8 times wire with 0 wt.% BCMN.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":" 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad55cf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, amorphous B coated Mg nanopowder (BCMN) is synthesized and the transport properties of MgB2 superconducting wire is significantly enhanced with different contents of BCMN. BCMN has high reactivity since it contains nanoscale Mg and amorphous B. It allows to obtain MgB2 nanocrystals at only 400 °C with the compression of a lattice parameter and expansion of c lattice parameters compared to MgB2 formed by micron-sized Mg mixed with amorphous B (Mg+B) powders. These MgB2 nanocrystals serve as crystal nuclei and promote the crystallization and growth of MgB2. The mismatch of different lattice parameters prepared using BCMN and M+B powders induces low angle grain boundaries (LAGBs) embedded in MgB2 grains. LAGB acts as plane defects, leading to a dominant surface pinning mechanism and an enhancement in the critical current density dependent on the magnetic field (J
c(H)). At 4.2 K in 6 T, transport critical current density (J
ct) of wire with 20 wt.% BCMN is 6.7×104 A·cm−2, approximately 1.8 times wire with 0 wt.% BCMN.