Amorphous B coated Mg nanopowder induces low angle grain boundaries and enhances J c of MgB2 wire

D. Xi, Xinwei Cai, Qingyang Wang, Chen Guo, Li Li, Meng Song, Yan Zhang, Dongliang Wang, Yanwei Ma, Guo Yan, Furen Wang, Zizhao Gan
{"title":"Amorphous B coated Mg nanopowder induces low angle grain boundaries and enhances J\n c of MgB2 wire","authors":"D. Xi, Xinwei Cai, Qingyang Wang, Chen Guo, Li Li, Meng Song, Yan Zhang, Dongliang Wang, Yanwei Ma, Guo Yan, Furen Wang, Zizhao Gan","doi":"10.1088/1361-6668/ad55cf","DOIUrl":null,"url":null,"abstract":"\n In this work, amorphous B coated Mg nanopowder (BCMN) is synthesized and the transport properties of MgB2 superconducting wire is significantly enhanced with different contents of BCMN. BCMN has high reactivity since it contains nanoscale Mg and amorphous B. It allows to obtain MgB2 nanocrystals at only 400 °C with the compression of a lattice parameter and expansion of c lattice parameters compared to MgB2 formed by micron-sized Mg mixed with amorphous B (Mg+B) powders. These MgB2 nanocrystals serve as crystal nuclei and promote the crystallization and growth of MgB2. The mismatch of different lattice parameters prepared using BCMN and M+B powders induces low angle grain boundaries (LAGBs) embedded in MgB2 grains. LAGB acts as plane defects, leading to a dominant surface pinning mechanism and an enhancement in the critical current density dependent on the magnetic field (J\n c(H)). At 4.2 K in 6 T, transport critical current density (J\n ct) of wire with 20 wt.% BCMN is 6.7×104 A·cm−2, approximately 1.8 times wire with 0 wt.% BCMN.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":" 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad55cf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, amorphous B coated Mg nanopowder (BCMN) is synthesized and the transport properties of MgB2 superconducting wire is significantly enhanced with different contents of BCMN. BCMN has high reactivity since it contains nanoscale Mg and amorphous B. It allows to obtain MgB2 nanocrystals at only 400 °C with the compression of a lattice parameter and expansion of c lattice parameters compared to MgB2 formed by micron-sized Mg mixed with amorphous B (Mg+B) powders. These MgB2 nanocrystals serve as crystal nuclei and promote the crystallization and growth of MgB2. The mismatch of different lattice parameters prepared using BCMN and M+B powders induces low angle grain boundaries (LAGBs) embedded in MgB2 grains. LAGB acts as plane defects, leading to a dominant surface pinning mechanism and an enhancement in the critical current density dependent on the magnetic field (J c(H)). At 4.2 K in 6 T, transport critical current density (J ct) of wire with 20 wt.% BCMN is 6.7×104 A·cm−2, approximately 1.8 times wire with 0 wt.% BCMN.
非晶 B 涂层纳米镁粉诱导低角度晶界并增强 MgB2 线材的 J c
这项研究合成了无定形 B 涂层纳米镁粉(BCMN),不同含量的 BCMN 显著提高了 MgB2 超导线材的传输性能。由于 BCMN 含有纳米级镁和无定形 B,因此具有很高的反应活性。与微米级镁和无定形 B(Mg+B)粉末混合形成的 MgB2 相比,BCMN 只需 400 ℃ 就能获得 MgB2 纳米晶体,同时压缩 a 晶格参数,扩大 c 晶格参数。这些 MgB2 纳米晶体可作为晶核,促进 MgB2 的结晶和生长。使用 BCMN 和 M+B 粉末制备的不同晶格参数的不匹配会诱发嵌入 MgB2 晶粒的低角度晶界(LAGB)。低角度晶界就像平面缺陷一样,导致了一种占主导地位的表面钉扎机制,并增强了与磁场相关的临界电流密度(J c(H))。在 4.2 K 和 6 T 下,含有 20 wt.% BCMN 的金属丝的传输临界电流密度 (J ct) 为 6.7×104 A-cm-2,约为含有 0 wt.% BCMN 金属丝的 1.8 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信