Soil Biology & Biochemistry最新文献

筛选
英文 中文
Fertilization-induced greenhouse gas emissions partially offset carbon sequestration during afforestation 施肥引起的温室气体排放部分抵消了植树造林过程中的固碳作用
IF 9.8 1区 农林科学
Soil Biology & Biochemistry Pub Date : 2024-09-02 DOI: 10.1016/j.soilbio.2024.109577
Andrea Rabbai , Josep Barba , Marco Canducci , Kris M. Hart , A. Robert MacKenzie , Nicholas Kettridge , Giulio Curioni , Sami Ullah , Stefan Krause
{"title":"Fertilization-induced greenhouse gas emissions partially offset carbon sequestration during afforestation","authors":"Andrea Rabbai ,&nbsp;Josep Barba ,&nbsp;Marco Canducci ,&nbsp;Kris M. Hart ,&nbsp;A. Robert MacKenzie ,&nbsp;Nicholas Kettridge ,&nbsp;Giulio Curioni ,&nbsp;Sami Ullah ,&nbsp;Stefan Krause","doi":"10.1016/j.soilbio.2024.109577","DOIUrl":"10.1016/j.soilbio.2024.109577","url":null,"abstract":"<div><p>Newly-planted forests require careful management to ensure the successful establishment of young trees; this can include herbicide application, irrigation, fertilization, or a combination of these treatments. The global rise in nitrogen (N) fertilizer application in managed forest plantations is driven by policies aiming at rapid tree growth and carbon sequestration as a strategy to tackle climate change. However, the impact of N-fertilizer on production and consumption of greenhouse gases (GHG), such as carbon dioxide (CO<sub>2</sub>), nitrous oxide (N<sub>2</sub>O), and methane (CH<sub>4</sub>) is poorly understood, particularly when combined with irrigation. As a result, assessing forest GHG balance is key to defining effective climate mitigation strategies through afforestation projects.</p><p>This study assessed the response of GHG fluxes to irrigation and fertilization on recently afforested lowland arable land in central England, across loamy and sandy loam soils. The application of 180 kg ha<sup>−1</sup> of N via an irrigation system, aimed at enhancing wood production and C sequestration, resulted in an increase of CO<sub>2</sub> and N<sub>2</sub>O emissions for both soil types. Particularly, the N<sub>2</sub>O emission factors (EF; kg N<sub>2</sub>O/kg N applied) for loamy and sandy loamy soils were 3.9% and 2.1%, respectively, higher than the IPCC default estimate of 1% for agricultural and forest land. Furthermore, both sandy loam and loamy soils showed a distinct transition from being CH<sub>4</sub> sinks to sources. Thus, the combined application of irrigation and N-fertilizer had a significant impact on the total Global Warming Potential (GWP), which increased by 34% and 32% for sandy loam and loamy soil, respectively, when compared to their controls. Despite a significant increase in tree growth under fertilized conditions, the offset potential was only partial, highlighting the net contribution to GHG emissions. The outcomes of this study emphasise the potential for significant “carbon-equivalent-debt” from afforestation supported in its early years by irrigation and fertilization.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"199 ","pages":"Article 109577"},"PeriodicalIF":9.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038071724002669/pdfft?md5=b150f632c8947a97153b01cc886de80e&pid=1-s2.0-S0038071724002669-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging ecological processes to diversity formation and functional profiles in belowground bacterial communities 将生态过程与地下细菌群落的多样性形成和功能特征联系起来
IF 9.8 1区 农林科学
Soil Biology & Biochemistry Pub Date : 2024-08-29 DOI: 10.1016/j.soilbio.2024.109573
Beibei Chen , Ziheng Peng , Shi Chen , Yu Liu , Jiejun Qi , Haibo Pan , Hang Gao , Jiamin Gao , Chunling Liang , Jiai Liu , Xun Qian , Xiao Zhang , Sanfeng Chen , Jizhong Zhou , Gehong Wei , Shuo Jiao
{"title":"Bridging ecological processes to diversity formation and functional profiles in belowground bacterial communities","authors":"Beibei Chen ,&nbsp;Ziheng Peng ,&nbsp;Shi Chen ,&nbsp;Yu Liu ,&nbsp;Jiejun Qi ,&nbsp;Haibo Pan ,&nbsp;Hang Gao ,&nbsp;Jiamin Gao ,&nbsp;Chunling Liang ,&nbsp;Jiai Liu ,&nbsp;Xun Qian ,&nbsp;Xiao Zhang ,&nbsp;Sanfeng Chen ,&nbsp;Jizhong Zhou ,&nbsp;Gehong Wei ,&nbsp;Shuo Jiao","doi":"10.1016/j.soilbio.2024.109573","DOIUrl":"10.1016/j.soilbio.2024.109573","url":null,"abstract":"<div><p>Revealing the generation and maintenance of biodiversity is a central goal in ecology, but how dispersal, selection, and regional taxon pool size shape soil microbial communities is not well understood. Here, we examined how dispersal and environmental selection affected soil bacterial diversity and their related metabolic functions by leveraging large-scale cross-biome soil surveys of ∼1400 samples from diverse ecosystems across China, including agricultural, forest, grassland, and wetland soils. Our results showed that high dispersal increased <em>α</em>-diversity and decreased <em>β</em>-diversity, whereas strong selection generated the opposite pattern in various ecosystems. This is likely due to dispersal enabling species access to otherwise unreachable habitats, and environmental selection excluding non-adapted species from communities. The <em>α</em>-diversity increased with <em>γ</em>-diversity, whereas <em>β</em>-diversity did not covary. We also showed that bacterial phylotypes positively associated with dispersal and selection exhibited distinct metabolic diversity. Dispersal-induced phylotypes, which were abundant in agricultural soils, exhibited more metabolic diversity in fructose and mannose, starch and sucrose, and nitrogen metabolism. Conversely, selection-induced phylotypes, dominated in wetland soils, were primarily associated with sulfur and methane metabolism. In addition, the complexity of taxon associations increased when communities had higher selection increasing <em>β</em>-diversity. Our study establishes the predictive links of ecological processes to microbial diversity, metabolic functions, and taxon coexistence, thus facilitating a better understanding of the mechanisms underlying biodiversity generation and conservation.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109573"},"PeriodicalIF":9.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Responses of invertebrate traits to litter chemistry accelerate decomposition under nitrogen enrichment 富氮条件下无脊椎动物性状对垃圾化学加速分解的响应
IF 9.8 1区 农林科学
Soil Biology & Biochemistry Pub Date : 2024-08-23 DOI: 10.1016/j.soilbio.2024.109572
Jianni Sun , Chongzhe Zhang , Daoyuan Yu , Xinyi Yin , Yanhong Cheng , Xiaoyun Chen , Manqiang Liu
{"title":"Responses of invertebrate traits to litter chemistry accelerate decomposition under nitrogen enrichment","authors":"Jianni Sun ,&nbsp;Chongzhe Zhang ,&nbsp;Daoyuan Yu ,&nbsp;Xinyi Yin ,&nbsp;Yanhong Cheng ,&nbsp;Xiaoyun Chen ,&nbsp;Manqiang Liu","doi":"10.1016/j.soilbio.2024.109572","DOIUrl":"10.1016/j.soilbio.2024.109572","url":null,"abstract":"<div><p>Nitrogen (N) enrichment shapes litter chemistry, subsequently influencing soil invertebrates and litter decomposition. However, there has been a lack of attention to how soil invertebrates respond to changes in litter chemistry and then drive litter decomposition under N enrichment. Here, trait-based approaches were adopted to explore functional responses of Collembola, a crucial and functional group of invertebrates. We conducted reciprocal transplantation of plant litter between ambient N levels (0 kg N ha<sup>−1</sup> yr<sup>−1</sup>) and N enrichment (90 kg N ha<sup>−1</sup> yr<sup>−1</sup>) plots in a field experiment, quantifying Collembola traits and litter mass loss during litter decomposition process. Results showed that N enrichment-derived litter recruited Collembola with long antenna, legs, and strong mandibles in enrichment environment, while Collembola with same traits were recruited by ambient-derived litter in ambient environment. Collembola traits, including antenna to body ratio, leg to body ratio, and mandible width to length ratio, coincided with high litter decomposition rates under N enrichment. Overall, the results provide evidence that Collembola with strong resource acquisition abilities responded to changes in litter chemistry, and such shifts further accelerate litter decomposition under N enrichment. Our findings demonstrate that adopting trait-based approaches to link litter and invertebrates would advance the understanding of ecosystem processes governed by biological regulation under global change.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109572"},"PeriodicalIF":9.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple anthropogenic environmental stressors structure soil bacterial diversity and community network 多种人为环境压力因素对土壤细菌多样性和群落网络结构的影响
IF 9.8 1区 农林科学
Soil Biology & Biochemistry Pub Date : 2024-08-23 DOI: 10.1016/j.soilbio.2024.109560
Mochen Wu, Siyuan Xie, Jingxi Zang, Yuanze Sun, Shimeng Xu, Si Li, Jie Wang
{"title":"Multiple anthropogenic environmental stressors structure soil bacterial diversity and community network","authors":"Mochen Wu,&nbsp;Siyuan Xie,&nbsp;Jingxi Zang,&nbsp;Yuanze Sun,&nbsp;Shimeng Xu,&nbsp;Si Li,&nbsp;Jie Wang","doi":"10.1016/j.soilbio.2024.109560","DOIUrl":"10.1016/j.soilbio.2024.109560","url":null,"abstract":"<div><p>Microbial communities in many ecosystems are suffering a wide range of environmental stressors induced by anthropogenic perturbations. While the impacts of a single stressor have been extensively estimated in numerous studies, the responses of microbial communities to multiple environmental stressors simultaneously are still poorly understood. In the current study, we investigated the taxonomic diversity, community resistance, and co-occurrence interaction of soil bacterial communities treated with different numbers of environmental stressors by conducting 136 microcosms. We found that the richness and Shannon diversity of the soil community decreased significantly from 1430 to 6.54 in the mono-factor treatments to 920 and 5.77 in the hepta-factor treatments. The counts of nodes and edges of the soil microbial networks decreased with the increasing stressor number, potentially indicating that multiple stressors can reduce the network size. Multiple stressors increased the community resistance potential to environmental disturbance. Additionally, the network cohesion suggested that the cooperative and competitive behaviors between microorganisms were induced by multiple stressors. The observation could be potentially due to the enrichment of the generalists by multiple environmental stressors. Although only a handful of stressors were included, our study still indicated that multiple environmental stressors would lead to diversity loss via deterministic processes.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109560"},"PeriodicalIF":9.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel insights into the factors influencing rhizosphere reactive oxygen species production and their role in polycyclic aromatic hydrocarbons transformation 影响根瘤活性氧产生的因素及其在多环芳烃转化中作用的新见解
IF 9.8 1区 农林科学
Soil Biology & Biochemistry Pub Date : 2024-08-20 DOI: 10.1016/j.soilbio.2024.109562
Jinbo Liu , Siqi Shen , Kecheng Zhu , Ziyan Li , Na Chen , Eric Lichtfouse , Hanzhong Jia
{"title":"Novel insights into the factors influencing rhizosphere reactive oxygen species production and their role in polycyclic aromatic hydrocarbons transformation","authors":"Jinbo Liu ,&nbsp;Siqi Shen ,&nbsp;Kecheng Zhu ,&nbsp;Ziyan Li ,&nbsp;Na Chen ,&nbsp;Eric Lichtfouse ,&nbsp;Hanzhong Jia","doi":"10.1016/j.soilbio.2024.109562","DOIUrl":"10.1016/j.soilbio.2024.109562","url":null,"abstract":"<div><p>Reactive oxygen species (ROS) are recognised as pivotal biogeochemical process drivers. However, the factors influencing ROS production in the rhizosphere and their role in pollutant transformation remain elusive. We investigated ROS with a focus on spatiotemporal variations in superoxide radicals (O<sub>2</sub><sup>•−</sup>), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and hydroxyl radicals (<sup>•</sup>OH) in the rhizosphere of maize during root development, and elucidated the impact of environmental conditions on ROS production. <em>In-situ</em> visualisation by fluorescence imaging showed that ROS hotspots gradually shifted from seminal to lateral roots during maize growth, indicating that newly developed roots are the major contributors to ROS production. The three types of ROS contents changed with root growth, suggesting that root development regulates ROS production. The ROS contents reached a maximum at 25 °C and 45% maximum field capacity. Both ambient temperature and soil moisture indirectly influenced ROS production by regulating the release of root exudates to induce changes in water-soluble phenols and dissolved organic carbon (DOC). In contrast, ROS content gradually increased with oxygen availability, which directly mediated ROS generation by acting as a precursor. More interestingly, the presence of polycyclic aromatic hydrocarbons (PAHs) significantly enhanced ROS generation, which further promoted PAH removal with a contribution of 31.4–43.3%. These findings provide new insights into the occurrence, distribution, and environmental effects of ROS in the rhizosphere.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109562"},"PeriodicalIF":9.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ozone strengthens the ex vivo but weakens the in vivo pathway of the microbial carbon pump in poplar plantations 臭氧加强了杨树种植园微生物碳泵的体内外途径,但削弱了其体内途径
IF 9.8 1区 农林科学
Soil Biology & Biochemistry Pub Date : 2024-08-20 DOI: 10.1016/j.soilbio.2024.109559
Haifeng Zheng , Lars Vesterdal , Evgenios Agathokleous , Xiangyang Yuan , Mingyue Yuan , Yansen Xu , Petr Heděnec , Bo Shang , Zhaozhong Feng , Johannes Rousk
{"title":"Ozone strengthens the ex vivo but weakens the in vivo pathway of the microbial carbon pump in poplar plantations","authors":"Haifeng Zheng ,&nbsp;Lars Vesterdal ,&nbsp;Evgenios Agathokleous ,&nbsp;Xiangyang Yuan ,&nbsp;Mingyue Yuan ,&nbsp;Yansen Xu ,&nbsp;Petr Heděnec ,&nbsp;Bo Shang ,&nbsp;Zhaozhong Feng ,&nbsp;Johannes Rousk","doi":"10.1016/j.soilbio.2024.109559","DOIUrl":"10.1016/j.soilbio.2024.109559","url":null,"abstract":"<div><p>Elevated ozone (eO<sub>3</sub>) and atmospheric nitrogen (N) deposition are important climate change components that can affect plant growth and plant-soil-microbe interactions. However, the understanding of how eO<sub>3</sub> and its interaction with N deposition affect soil microbially mediated carbon (C) cycling and the fate of soil C stocks is limited. This study aimed to test how eO<sub>3</sub> and N deposition affected soil microbial metrics (i.e., respiration, enzyme activities, biomass, necromass, and community composition) and resulting soil organic C (SOC) fractions in the rhizosphere of poplar plantations with different sensitivity to O<sub>3</sub>. Exposure to O<sub>3</sub> and/or N deposition for four years was conducted within a free-air O<sub>3</sub> concentration-enrichment facility. Elevated O<sub>3</sub> reduced soil microbial respiration and biomass C but enhanced the enzymatic acquisition of C (i.e., potential soil hydrolase and oxidase activity) and shifted to a fungi-dominated community composition. These responses suggest that microbial C availability decreased and microbes allocated more energy to obtain C and nutrients from biochemically resistant substrates under eO<sub>3</sub>. Elevated O<sub>3</sub> decreased bacterial necromass C and total necromass C, which could explain the observed decreases in mineral-associated organic C and SOC. The effects of eO<sub>3</sub> on soil microbial C availability and community composition were strengthened by N addition, whereas there were no differences in the below-ground effects of eO<sub>3</sub> between the two poplar clones. Taken together, the increased soil extracellular enzyme activities and slightly increased particulate organic C content suggest that the microbial C pump pathway via microbial <em>ex vivo</em> modification was strengthened by eO<sub>3</sub>, whereas the pathway via microbial <em>in vivo</em> turnover was weakened, as suggested by the decreases in soil microbial respiration, biomass, necromass, and mineral-associated organic C. Our study provides evidence that aboveground eO<sub>3</sub> effects on trees may affect belowground microbial processing of organic matter and ultimately the persistence of SOC.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109559"},"PeriodicalIF":9.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forest restoration increases energy flow through the fungal channel and decreases energy flow through the herbivorous channel in soil micro-food webs 在土壤微食物网中,森林恢复增加了通过真菌渠道的能量流,减少了通过食草渠道的能量流
IF 9.8 1区 农林科学
Soil Biology & Biochemistry Pub Date : 2024-08-20 DOI: 10.1016/j.soilbio.2024.109561
Mengqiang Wang , Dandan Gao , Shuguang Liu , Wende Yan , Jie Zhao
{"title":"Forest restoration increases energy flow through the fungal channel and decreases energy flow through the herbivorous channel in soil micro-food webs","authors":"Mengqiang Wang ,&nbsp;Dandan Gao ,&nbsp;Shuguang Liu ,&nbsp;Wende Yan ,&nbsp;Jie Zhao","doi":"10.1016/j.soilbio.2024.109561","DOIUrl":"10.1016/j.soilbio.2024.109561","url":null,"abstract":"<div><p>Chinese fir (<em>Cunninghamia lanceolata</em>) is one of the most important economic tree species in Central South China. Several decades of successive rotation of <em>C. lanceolata</em> monocultures have resulted in serious ecosystem degradation. Substantial efforts are underway to convert <em>C. lanceolata</em> monocultures to mixed forests to restore ecosystem functions and services. However, it is unclear whether forest restoration will improve soil quality. Soil nematodes were employed as an ecological indicator of soil quality to assess soil food web structure and energy flow along a forest restoration chronosequence. The chronosequence of transformation stages include: (i) early stage <em>C. lanceolata</em> monocultures aged 5, 10, and 20 years old; (ii) mid-stage conifer-broadleaf mixed forest aged over 20 years old; and (iii) late-stage broadleaf forest aged over 40 years old. Our results suggest that forest restoration changed soil nematode abundance, diversity, and community composition in both dry and wet seasons. Abundance of soil nematodes increased progressively along the restoration chronosequence, peaking in the conifer-broadleaf mixed forest. The relative abundance and energy flow of herbivorous nematodes decreased progressively by 25% and 82% with forest restoration stage, respectively. Forest restoration from <em>C. lanceolata</em> to mixed forests increased energy flow from basal resources to fungivorous nematodes and from fungivorous to omnivorous-carnivorous nematodes by 58% and 52%, respectively. Our findings suggest that forest restoration from <em>C. lanceolata</em> monocultures to mixed forests increases soil biodiversity and food web energy flows to trophic groups higher in the food chain. Therefore, converting <em>C. lanceolata</em> plantations to mixed forests has potential to boost forest ecosystem services and promote sustainable forest management.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109561"},"PeriodicalIF":9.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparison among EL-FAME, PLFA, and quantitative PCR methods to detect changes in the abundance of soil bacteria and fungi 比较 EL-FAME、PLFA 和定量 PCR 三种检测土壤细菌和真菌丰度变化的方法
IF 9.8 1区 农林科学
Soil Biology & Biochemistry Pub Date : 2024-08-19 DOI: 10.1016/j.soilbio.2024.109557
José A. Siles, Roberto Gómez-Pérez, Alfonso Vera, Carlos García, Felipe Bastida
{"title":"A comparison among EL-FAME, PLFA, and quantitative PCR methods to detect changes in the abundance of soil bacteria and fungi","authors":"José A. Siles,&nbsp;Roberto Gómez-Pérez,&nbsp;Alfonso Vera,&nbsp;Carlos García,&nbsp;Felipe Bastida","doi":"10.1016/j.soilbio.2024.109557","DOIUrl":"10.1016/j.soilbio.2024.109557","url":null,"abstract":"<div><p>EL-FAME (ester-linked fatty acid methyl ester), PLFA (phospholipid fatty acid), and qPCR (quantitative PCR) of ribosomal genes are three of the most common methods used to quantify soil microbial communities due to their versatility. The reliability of these three methods has not been simultaneously compared in situations of rapid (in the frame of days and weeks) changes in soil microbial abundances. For this purpose, we (i) incubated badland, cropland, and forest soils with nutrients or antibiotics for 2, 7, 14, and 28 days, (ii) quantified total, bacterial, and fungal abundances through EL-FAME, PLFA, and qPCR methods, and (iii) measured soil basal respiration (as indicator of living biomass). The general dynamic patterns of the three soil microbial fractions in response to soil addition of nutrients and antibiotics were captured by the three methods, which led to strong and positive associations between the abundances of total microorganisms, bacteria, and fungi measured by the three procedures. However, these relationships were stronger between the EL-FAME and PLFA results. Further, soil basal respiration was associated to a higher extent with total, bacterial, and fungal abundances captured by EL-FAME and PLFA analyses than with those measured by qPCR, which suggests that the first two methods are most closely related to the soil living microbial community. In general, dynamics in the abundance of total and bacterial communities were better captured than those of fungi by the three methods. The PLFA analysis seems to perform better than the EL-FAME method in forest soil and in detecting the small antibiotic-induced decreases in microbial abundances. Since the EL-FAME method is cheaper and allows a much faster processing of samples than the PLFA method, and the reliability of both methods is similar in detecting rapid changes of soil microbial abundances, choosing EL-FAME over PLFA may be advantageous in most cases.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109557"},"PeriodicalIF":9.8,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038071724002463/pdfft?md5=641dacbca983abe4829638d41812c2f2&pid=1-s2.0-S0038071724002463-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invasion of Prosopis trees into arid ecosystem alters soil carbon and nitrogen processes and soil trace gases emissions 刺槐入侵干旱生态系统改变土壤碳氮过程和土壤痕量气体排放
IF 9.8 1区 农林科学
Soil Biology & Biochemistry Pub Date : 2024-08-18 DOI: 10.1016/j.soilbio.2024.109558
Isaac Yagle , Alon Levinzon , José M. Grünzweig , Jean Marc Dufour-Dror , Udi Zurgil , Vasily I. Grabovsky , Alexandra N. Kravchenko , Ilya Gelfand
{"title":"Invasion of Prosopis trees into arid ecosystem alters soil carbon and nitrogen processes and soil trace gases emissions","authors":"Isaac Yagle ,&nbsp;Alon Levinzon ,&nbsp;José M. Grünzweig ,&nbsp;Jean Marc Dufour-Dror ,&nbsp;Udi Zurgil ,&nbsp;Vasily I. Grabovsky ,&nbsp;Alexandra N. Kravchenko ,&nbsp;Ilya Gelfand","doi":"10.1016/j.soilbio.2024.109558","DOIUrl":"10.1016/j.soilbio.2024.109558","url":null,"abstract":"<div><p>The invasion of drylands by leguminous mesquite (<em>Prosopis</em> spp.) is frequently associated with increases in the soil organic carbon (C) and nitrogen (N) pools. These increases stimulate soil microbial activity and accelerate soil C and N cycling. However, the impact of mesquite invasion on soil biogeochemistry, especially the emission of trace gases, in an ecosystem with an already established population of N-fixing plants is not well studied. To fill this knowledge gap, we quantified the <em>in-situ</em> soil trace gas emissions and the potential microbial activity in soils under invasive mesquite (<em>Prosopis juliflora</em>) trees (Prosopis), native acacia (<em>Acacia tortilis</em>) trees (Acacia), and in unvegetated soil between trees (Bare soil) on the western shore of the Dead Sea. To account for contributions of spatial and weather variabilities to the emission processes we conducted measurements across two geographic sites, 45 km apart, over two years, both under naturally dry soil conditions and after soil wetting. Before wetting, soil emissions of carbon dioxide (CO<sub>2</sub>) and nitric oxide (NOx) followed the order: Acacia &gt; Prosopis ≥ Bare soil, while soil nitrous oxide (N<sub>2</sub>O) emissions were low and uniform across the three habitats. The soil inorganic N concentration, microbial biomass, and water-extractable organic C were significantly higher under the <em>A</em>. <em>tortilis</em> canopies compared with <em>P</em>. <em>juliflora</em> and Bare soil. After wetting, soil trace gases emissions increased up to 66, 1534, and 42 times, for CO<sub>2</sub>, N<sub>2</sub>O, and NOx, respectively, and remained higher under the native <em>A</em>. <em>tortilis</em> than under <em>P</em>. <em>juliflora</em> and Bare soil (Acacia &gt; Prosopis &gt; Bare soil). The potential soil microbial activity, however, was similar between the soils under the tree canopies. Our results show that the establishment of invasive leguminous trees increase soil CO<sub>2</sub> and gaseous N emissions relative to the Bare soils, but not relative to native leguminous trees.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109558"},"PeriodicalIF":9.8,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of experimentally elevated virus abundance on soil carbon cycling across varying ecosystem types 通过实验提高病毒丰度对不同生态系统类型土壤碳循环的影响
IF 9.8 1区 农林科学
Soil Biology & Biochemistry Pub Date : 2024-08-16 DOI: 10.1016/j.soilbio.2024.109556
Ernest D. Osburn , Sara G. Baer , Sarah E. Evans , Steven G. McBride , Michael S. Strickland
{"title":"Effects of experimentally elevated virus abundance on soil carbon cycling across varying ecosystem types","authors":"Ernest D. Osburn ,&nbsp;Sara G. Baer ,&nbsp;Sarah E. Evans ,&nbsp;Steven G. McBride ,&nbsp;Michael S. Strickland","doi":"10.1016/j.soilbio.2024.109556","DOIUrl":"10.1016/j.soilbio.2024.109556","url":null,"abstract":"<div><p>Viruses are abundant and diverse members of soil communities, but their influences on soil biogeochemical cycling are poorly understood. To assess the potential for viruses to influence soil carbon (C) cycling in varying environmental contexts, we sampled soils from four contrasting ecosystem types across the continental United States: conifer forest, broadleaf deciduous forest, tallgrass prairie, and agricultural cropland. We then experimentally increased virus abundance in the soils by inoculating microcosms with virus concentrates isolated from the same original soils and incubated the soils for 14 days. The virus-treated conifer forest and prairie soils respired significantly less C (14 μg and 10 μg less C per gram of soil, respectively) over the course of the 14-day incubation compared with control soils, though the effects were proportionally small in magnitude (3% and 6% reductions in cumulative respiration, respectively). Following the initial 14-day incubation, we conducted a<sup>13</sup>C-glucose tracer incubation. In contrast to the initial incubation, after glucose addition we observed effects on respiration only in the agricultural soil, where respiration of soil organic matter-derived C nearly doubled in the virus-treated soils compared with control soils. We also observed overall reduced incorporation of <sup>13</sup>C into microbial biomass (<em>i.e.</em>, lower growth yield) and lower carbon use efficiency on average in all virus-treated soils. These results demonstrate that viruses can influence overall microbial metabolism but with different aggregate effects on soil C balance across soil types depending on soil physicochemical properties. Overall, our study demonstrates that viral influences on soil microorganisms can manifest in altered fates of soil C, with either increased or decreased respiratory C loss depending on ecosystem type.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109556"},"PeriodicalIF":9.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141998720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信